MODUL PRAKTIKUM PRAKTEK STATISTIK

SEKOLAH TINGGI MANAJEMEN INFORMATIKA DAN ILMU KOMPUTER EL RAHMA YOGYAKARTA 2011

MODUL I PENGENALAN SPSS DAN TABULASI DATA

A. MAKSUD DAN TUJUAN

1. MAKSUD

- Mengenalkan SPSS for Windows sebagai salah satu alat untuk mengolah serta menganalisis data statistik
- 2. TUJUAN
 - a. Agar mahasiswa dapat melakukan operasi dasar SPSS for Windows.
 - b. Agar mahasiswa mampu memasukkan data secara langsung dan menyuntingnya.

B. TEORI SINGKAT

SPSS merupakan singkatan dari *Statistical Product and Service Solution* salah satu program aplikasi komputer untuk menganalisis data statistik. Dilihat dari namanya, SPSS banyak membantu memecahkan berbagai permasalahan ilmu - ilmu sosial, khususnya dalam analisis statistik. Namun demikian fleksibilitas yang dimilikinya menyebabkan berbagai problem analisis data diluar ilmu sosial juga dapat diatasi dengan baik. Keunggulan SPSS for Windows antara lain :

- a. Mudah dalam pengoperasiannya (user friendly), antara lain penekanan modus pengoperasian pada menu full-down dengan *dialog box interface*.
- b. Unggul dalam menampilkan grafik hasil analisis sekaligus kemudahan kemudahan dalam penyuntingan grafik.
- c. Menyediakan *syntax window* sebagai sarana penyusunan perintah program, untuk mengatasi masalah seperti pembobotan case dengan bobot sesuai yang dikendaki, instruksi- instruksi dengan menu full-down sangat tidak efisien bila dibandingkan dengan penyusunan perintah dengan modus interaktif atau modus batch.
- d. Menyediakan fasilitas analisis yang lebih lengkap dan menyeluruh.
- e. Bagi penyusun program SPSS for Window jauh lebih praktis, karena sudah tidak memerlukan teks editor lainnya.
- f. *Help Window* pada SPSS for Windows, menyediakan *Glossary* yang akan membantu dalam mendefinisikan berbagai istilah statistik
- g. Tersedia *SPSS Syntax* yang akan mendefinisikan berbagai istilah khususnya perintah, subperintah dan kata kunci yang digunakan SPSS For Windows.

Kelemahan SPSS for Windows

- a. Pada menu full-down, diantaranya pada uji beda nyata terkecil (*Least-significant difference*) pada prosedur Oneway ANOVA hanya menyediakan tingkat signifikan sebesar 0,05 saja, dimana bisa ditentukan tingkat signifikan yang lain bila bekerja dalam modus pemrograman.
- b. Meskipun menu Help sangat membantu, namun disarankan untuk tidak terlalu tergantung pada bantuan informasi tersebut. karena adanya sedikit kesalahan yang cukup mengganggu pada beberapa informasi tersebut, seperti Help untuk prosedur *Runs Test* (Non Parametrik) yang memuat informasi salah dalam hal pembagian kategori Cut Point, juga informasi yang semestinya tidak perlu ada pada help untuk prosedur *chi-Square*.

1. Mempersiapkan data

Untuk bisa dimengerti oleh Prosessor pada SPSS for Windows, data tersebut harus mempunyai format, jenis, dan aturan - aturan tertentu. Hal ini mengingat bahwa selain data yang dibuat melalui SPSS data Editor yang telah siap pakai dalam SPSS for Windowsini, paket program ini juga dapat mengakses data yang disusun dengan menggunakan text editor di luar SPSS for Windows, seperti WordStart (Non document), Side Kick, Notepad, Norton Comander dan text editor yang menggunakan kode ASCII laninya.

2. Struktur Data

Struktur data pada SPSS terdiri dari mahasiswa baris dan n kolom, tiap baris dinamakan case (kasus), tiap kolom data mempunyai heading yang dinamakan variabel. Terdapat 8 type variabel yang dikenal oleh SPSS yaitu: **Numeric, Comma, Dot, Scientific notation, Date, Dollar, Custom Currency, dan String.** Selain type date dan string type - type data tersebut pada hakekatnya sama dengan type numeric yang membedakan hanya format tanpilannya saja. Variabel bertype date berbasis numeric yang didefinisikan untuk format penanggalan dan atau waktu (jam), sehingga variabel ini bisa dianalisis sebagaimana variabel numerik. Jadi prinsipnya hanya ada 2 type variabel pada SPSS yaitu Numeric dan String.

Arina	2	Jl. Adi Sucipto 23	14.07.99
Camellia	2	Jl. Agus Salim 67	19.01.77
Heri	1	Jl. Aji Spinggir 50	28.11.78
Alfina	2	Jl. Merdeka Barat 54	05.07.75
Yudi	1	Jl. Timoho 90	23.12.77
	Arina Camellia Heri Alfina Yudi	Arina2Camellia2Heri1Alfina2Yudi1	Arina2Jl. Adi Sucipto 23Camellia2Jl. Agus Salim 67Heri1Jl. Aji Spinggir 50Alfina2Jl. Merdeka Barat 54Yudi1Jl. Timoho 90

Tabel diatas menunjukkan listing data yang terdiri dari 4 variabel dan 5 case. Misal variabel - variabel tersebut diberi nama NAMA, SEX, ALAMAT dan TGL.LAHIR, maka NAMA dan ALAMAT adalah variabel yang bertype string SEX bertype Numeric dan TGL.LAHIR bertype date.

Aturan pemberian nama variabel

- Maksimum 8 karakter
- Tidak boleh ada spasi
- Karakter pertama harus berupa huruf atau karakter @
- Karakter terakhir tidak boleh berupa titik
- Hindari istilah istilah yang biasa digunakan SPSS, seperti ALL, AND, BY, EQ, GE, GT, LE, NE, NOT, OR, TO, WITH
- Huruf besar dan huruf kecil dianggap sama

Interaksi antara tiap variabel dan tiap case adalah value. Pada contoh diatas value dari variabel NAMA pada xase pertama 'ARINA' dan value dari variabel SEX pada case kedua adalah 2 yang dalam hal ini berarti perempuan.

3. Format Data

File data yang dibuat tidak melalui SPSS Data Editor mempunyai 2 jenis format, yaitu *fixed* (tertentu) dan *freefield* (bebas), sedangkan file data yang dibuat melalui SPSS Data Editor sudah mempunyai format baku yang berorientasi pada

Praktek Statistik

jenis fixed. Format fixed berindikasi bahwa setiap variabel menempati posisi pada lokasi (kolom) tertentu contoh pada tabel diatas. Sedangkan pada format freefield penenpatan variabel tidak perlu pada lokasi (kolom) tertentu, contoh pada tabel dibawah ini :

'Arina' 2 'Jl. Adi Sucipto 23' 14.07.99 'Camellia' 2 'Jl. Agus Salim 67' 19.01.77 'Hery' 1 'Jl. Aji Spinggir 50' 28.07.78 'Alfina' 2 ' Jl. Merdeka Barat 54' 05.07.75 'Yudi' 1 'Jl. Timoho 90' 23.12.77

Terlihat bahwa format freefield sangat tidak rapi jika dibandingkan dengan format fixed, akan tetapi untuk menanganan data dalam jumlah besar format freefield merupakan tip untuk penghematan memori. Hal yang perlu diperhatikan dalam format freefield ialah urutan variabel pada tiap case harus tetap. Value antar variabel pada tiap case harus dipisahkan dengan paling sedikit satu spasi atau satu tanda koma (,).

Untuk menyatakan value suatu variabel string yang mempunyai lebih dari satu kata sebagai satu kesatuan, seperti value 'Jl. Adi Sucipto', maka value tersebut harus diapit dengan tanda apostrof (') atau tanda petik (").

4. Missing value

Missing value digunakan untuk mendeklasraqsikan data yang hilang / tidak lengkap, hal ini diperhatikan karena data yang hilang akan sangat berpengaruh pada hasil pengolahan maupun analisis dari keseluruhan data. Ada 2 jenis missing value yang dikenal oleh SPSS, yaitu :

- User missing value ; mempunyai keentuan yang ditetapkan oleh pemakai, ditentukan harga 0 sebagai missing value.
- System missing value; ditentukan secara otomatis oleh SPSS bila dijumpai harga yang ilegal, seperti didapatinya karakter alphabetic pada variabel berjenis numerik atau perhitngan yang menghasilkan nilai tak terdefinisi pada perintah transformasi data seperti pembagian dengan 0.

5. Mengaktifkan SPSS

Untuk mengaktifkan SPSS dapat dijalankan melalui tombol Star dengan mengklik SPSS, sehingga akan muncul logo SPSS yang diikuti dengan munculnya dua buah window dibelakangnya yaitu Output Windows dan Window Data Editor yang siap dioperasikan, sebagaimana gambar berikut ini :

6. Membuat file Data

Pada saat SPSS diaktifkan secara otomatis SPSS Data Editor akan terbuka dengan nama New Data. Bila pada Data Editor telah berisi data, dapat dibuat file data baru dari menu utama dangan : Klik File: New: Data (Alt-F: N: D)

7. Mendefinisikan Variabel

Ada 2 cara untuk mendefinisikan variabel

Cara I :

- Pilih sembarang sel pada kolom dimana variabel akan didefinisikan
- Klik Data; Define Variabel; (Alt D; D)

1	Eile Edit	⊻iew	Data	Iransform	Analyze Grapi	ns Utilities Y	⊻indow <u>H</u> elp	
	🛎 🖬		R		🏪 📴 🖗	H T	1 de FR 👒	0
	1:							
			var	var	var	var	var	var
	1	i —						
	2	2						
	3	8						
74	4	1						
	5	8						
	7	1						
	9	1						
	10	1						
	11							
	12	2						
	13	1						
	14							
	15	2	_					

Cara II

Doubel klik pada judul kolom dimana variabel akan didefinisikan, dari sini akan diperoleh tampilan sebagai berikut :

845

					-
	6	<i>a</i> 🔍 🖍	a 🔚 📴	两星	ň
		Name	Туре	Width	
	1	no	Numeric	8	0
	2	nama	String	25	
	3				
	4				
	5				
	6				
•					
	8				-
	- 9				-
	11				-
	12				H
	13				H
	14	1			F
	15	i			F
	16	L	_		
	I ∢ I ≻ I\ E	V & waiv etc	ariable View 7		

8. Tombol Type

Untuk menentukan tipe variabel, lebar variabel (field) dan jumlah angka desimal. Apabila kita klik pada tombol type akan muncul tampilan sebagai berikut :

Define Variable Type	:	×
Numeric <u>C</u> omma <u>D</u> ot <u>S</u> cientific notation D <u>a</u> te Dollar Custom currency String	<u>W</u> idth: <mark>8</mark> Decimal <u>P</u> laces: 2	Continue Cancel Help

Modul Praktikum

9. Tombol Label

Untuk menentukan variabel dan harga dari label tersebut (bila diperlukan), apabila diklik tombol Labels akan muncul tampilan sebagai berikut :

Define Labels:	×
⊻ariable Label:	Continue
Value Labels	Cancel
Value:	Help
Valu <u>e</u> Label:	
Add	
Change	
Bemove	

10. Tombol Missing Value

Untuk menentukan harga - harga dari suatu variabel yang akan dideklarasikan sebagai missing value.

11. Tombol Column Format

Untuk menentukan lebar kolom variabel dan untuk menentukan jenis perataannya (kiri, tengah, kanan), penetuan lebar kolom dapat dilakukan dengan drag pada pembatas judul kolom.

12. Menyimpan File Data

Data pada SPSS Data Editor dapat disimpan dengan langkah :

- a. Klik File; Save Data (Alt-F; S)
- b. Beri nama file pada kotak dialog Save Data As. (dalam pemberian nama file data tak perlu dituliskan ekstensinya, SPSS akan memberi ekstensi *.sav secara otomatis)
- c. Tekan OK

C. PRAKTEK

2.

Terdapat data nilai Statistik dari 10 Mahasiswa sebagai berikut :

No	NIM	NAMA	JK	TGS	UTS	UAS
1	12001	Erwin Hadi	1	70	50	60
2	12002	Ratnachoerniawatie	2	80	52	70
3	12003	Tri Karuniea Ratna	2	75	60	50
4	12004	Bayu Anggoro	1	63	72	60
5	12005	Bayu El Reyzal	1	85	70	75
6	12006	Krisna Fahriesta	2	80	80	82
7	12007	Izmaiel Fahmie	L I	72	72	80
8	12008	Elvin Rizqyanie	2	75	75	90
9	12009	Helvy Triana Rosa	2	80	80	60
10	12010	Fariq Dian Wisesa	1	70	70	70

Masukkan data tersebut diatas dengan menggunakan SPSS melalui langkah - langkah sebagai berikut :

- 1. Aktifkan SPSS dari menu utama Windows melalui tombol Start dengan mengklik SPSS.
 - Masukkan data diatas pada Window Data Editor dengan cara :
 - a. Double klik pada judul kolom pertama, sehingga akan muncul kotak dialog Define Variabel.
 - b. Isi variabel name dengan 'No'
 - c. Klik tombol Type, sehingga muncul kotak dialog Define Variable Type, pilih type numeric, dengan With = 4, Decimal = 0, klik tombol Continue, akan muncul kotak Define Variable lagi, klik OK kemudian pindah ke judul kolom berikutnya.
 - d. Ulangi langkah a, b, c, sehingga secara keseluruhan seperti terlihat pada tabel berikut ini

Variable Name	Туре	Width	Dec	Label
No	NUMERIC	4	0	
NIM	STRING	6		
NAMA	STRING	15		
JK	STRING	3		1=Laki-laki, 2=Perempuan
TGS	NUMERIC	4	0	
UTS	NUMERIC	4	0	
UAS	NUMERIC	4	0	

e. Isikan data pada setiap sel seperti mengisi data pada excel

f. Simpan file data dengan nama Modul 1.

3. Tampilkan file data tersebut dengan klik Menu Analyze; Report; Case Summarize, sehingga muncul kotak dialog List-Case. Pindahkan variabel - variabel yang akan ditampilkan pada kotak variable(s) dengan mengklik tanda panah berurutan, klik OK sehingga muncul tampilan pada Window Output.

4. Simpan output tersebut dengan nama output 1

Praktek Statistik

MODUL II MENYUNTING DATA DAN TRANSFORMASI DATA

A. MAKSUD DAN TUJUAN

- 1. MAKSUD
 - Melakukan operasi operasi terhadap file data
 - Mengenalkan beberapa perintah transformasi data
- 2. TUJUAN
 - Agar mahasiswa bisa menghapus, menyisipkan, mengkopi, mentranspose, mengurutkan data, memecah file dan memilih kasus.
 - Agar mahasiswa mampu mentransformasikan (modifikasi atau merubah) data dengan perintah COMPUTE, COUNT, RECODE.

B. TEORI SINGKAT

1. Menghapus data

- a. Menghapus isi sel
 - Pilih sel yang akan dihapus isinya dengan dengan cara klik dengan mouse
- Tekan tombol delete pada keyboard, untuk menghapus isi sejumlah sel sekaligus, pilih sejumlah sel tersebut dengan drag.
- b. Menghapus isi satu kolom
 - Klik judul kolom (nama variabel) yang akan dihapus isi -isi selnya.
 - Tekan tombol delete pada keyboard, untuk menghapus sejumlah kolom, pilih sejumlah kolom tersebut dengan drag pada bagian judul (nama variabel).
- c. Menghaupus isi satu baris
- Klik nomor case yang akan dihapus
- Tekan tombol delete pada keyboard, untuk menghapus sejumlah case sekaligus, pilihlah sejumlah case tersebut dengan drag pada bagian nomor case.

2. Mengcopi Data

- a. Mengcopi isi sel
 - Pilih sel yang akan dicopi isinya
 - Tekan tombol Ctrl C
 - Pindahkan penunjuk sel ke sel yang dituju
- Tekan Ctrl V
- b. Mengcopi isi satu kolom
 - Klik judul kolom (nama variabel) yang akan dicopi isi isi selnya
 - Tekan Ctrl C
 - Pindahkan penunjuk sel ke baris pertama yang dituju
 - Tekan Ctrl V

Hasil dari instruksi diatas adalah akan mengcopi kolom sekaligus dengan format variabelnya (tipe variabel, lebar kolom value label, dsb), dan pasti tidak mengubah nama variabel. Bila dikehendaki tidak ada perubahan format variabel pada kolom yang dituju yang dilakukukan adalah :

- Klik judul kolom (nama variabel) yang akan dicopi isi isi selnya
- Tekan Ctrl C
- Pindahkan penunjuk sel ke baris pertama kolom yang dituju
- Tekan Ctrl V

Untuk mengcopi isi sejumlah kolom sekaligus pilihlah sejumlah kolom tersebut dengan drag pada bagian judul kolom. c. Mengcopi case

- Klik nomor case yang akan di copi
- Tekan Ctrl C
- Klik nomor case yang dituju atau pindahkan penunjuk sel ke kolom pertama baris yang dituju.
- Tekan Ctrl V

Untuk mengcopi sejumlah case sekaligus pilihlah sejumlah case tersebut dengan drag pada bagian nomor case

Menyisipkan Data

- a. Menyisipkan kolom
 - Pindahkan penunjuk sel pada kolom yang akan disisipi
 - Klik Data ; Insert Variable (Alt D;V)
- b. Menyisipkan baris
 - Pindahkan penunjuk sel pada baris yang akan disisipi
 - Klik Data; Insert Case (Alt D; I)
- 4. Transpose Data

Transpose data adalah memindahkan kolom data menjadi baris data dan sebaliknya baris data kolom data. Perintah trasnpose ini akan menghasilkan file data baru. Langkah - langkah berikut ini untuk mentranspose file data dengan nama file *Modul 1.sav*

- a. Buka file modul 1.sav
- b. Klik Data; Transpose (Alt D; N)

Praktek Statistik

🚮 Transpose			×
 ♦ no. ▲¿ nim ▲} nama [nama] ▲¿ ik [ik] ♦ tgs 	Î	Variable(s):	OK <u>P</u> aste <u>R</u> eset Cancel
tus ∰ uas		<u>N</u> ame Variable:	Help

- c. Pindahkan satu atau beberapa variabel ke kotak *variable(s)*.
- d. Tekan OK.

Maka variabel - variabel yang akan dipindahkan akan menjadi case (baris) pada file data baru dan variabel - variabel yang tidak dipindahkan akan dihilangkan.

5. Pengurutan

Pengurutan case pada file data didasarkan pada satu atau baeberapa variabel dapat dilakukan dengan menggunakan perintah Sort Cases pada menu Data, dari perintah ini akan didapat kotak dialog sebagai berikut :

Pindahkan satu atau beberapa variabel ke kotak *sort by*, maka variabel - variabel tersebut akan dijadikan dasar pengurutan data. Pada kotak Sort Order dapat ditentukan modus pengurutannya yaitu *Ascending* atau *Descending*.

6. Split File

Perintah Split File digunakan untuk memecah file data ke dalam sub group - subgroup sehingga nantinya dalam analisis maupun dalam pembuatan chart didasarkan pada tiap - tiap subgroup tersebut (analisis) terpisah.

Untuk mendapatkan analisis terpisah terhadap masing - masing group dari beberapa group case, pilihlah Repeat Analysis for each group, dan pindahkan satu atau beberapa variabel (maks 8 variabel) ke kotak *Group Base On*. Variabel - variabel yang dipindahkan tersebut adalah variabel - variabel yang akan dipisah - pisah casenya ke dalam beberapa group. Ada 2 ketentuan yang perlu diperhatikan mengenai jumlah variabel yang anda pindahkan ke kota *Group Based On*:

- Bila hanya satu variabel yang akan dipindahkan maka nantinya dalam analisis dikelompokan berdasarkan masing masing value dari variabel tersebut.
- Bila lebih dari satu variabel yang akan dipindahkan maka nantinya dalam analisis dikelompokkan berdasarkan kombinasi value value dari variabel variabel yang dipindahkan tersebut..

Untuk Restore (menghilangkan pengaruh perintah Split File yang telah dijalankan), pilih tombol Option Analyze all case atau membuka kembali file data baru.

Dua buah tombol option di bawah kotak Group Based On dapat diaplikasikan hanya bila terlebih dahulu ditentukan pilihan pada tombol option Repeat analysis for each group, karena SPSS telah melakukan perintah pengurutan secara otomatis berdasarkan variabel group maka kemudian ditentukan pilihan file is already sorted. Variabel group yang digunakan sebagai dasar pengelompokkan dapat dilihat pada current status dibagian bawah kotak dialog Split File.

7. Select Case

Select case dapat digunakan untuk menentukan case - case yang akan diikutsertakan dalam analisis data selanjutnya. Terdapat 5 pilihan untuk menentukan dasar penyeleksian case :

- a. All Case, Seluruh case pada file kerja akan diikutsertakan dalam analisis data selanjutnya, pilihan ini merupakan default.
- b. If Condition is Satisfied ; Digunakan untuk memilih case case yang memenuhi kondisi logika tertentu, tekan tombol if... untuk menentukan kondisi logika tersebut.
- c. Randcm Sample of Cases; Digunakan bila hendak menggunakan case case random untuk pemrosesan data (menentukan sample data random dari populasi). Tekan tombol sample... untuk menentukan ukuran sample data tersebut.

Ada 2 pilihan kotak dialog dibawah ini :

- a. Aproximately -% of all case. Untuk menentukan persentase case yang akan diproses dari seluruh case pada file data, masukkan integer (bilangan bulat positif) antara 1 hingga 99 pada kotak yang tersedia.
- b. Exactly case from the firstcase. Untuk menentukan proporsi sampel yang akan digunakan, masukan integer pada 2 buah kotak yang tersedia, dimana isi pada kotak yang pertama harus lebih kecil dari isi pada kotak yang kedua, dan isi kotak yang kedua seharusnya tidak lebih besar dari jumlah cacah case pada file data. Pilihan ini akan menghasilkan sebuah variabel baru yang oleh SPSS diberi nama Filter_\$.
- c. Based on time or case range. Digunakan bila hendak memproses case -case yang berada dalam interval tertentu, tekan tombol Range.. untuk menentukan batas interval tersebut. Masukan integer pada dua buah kotak yang tersedia, yakni kotak first case dan kotak last case yang masing masing untuk nomor awal case dan nomor akhir case yang akan dianalsisi.
- d. Use Filter Variable. Digunakan bila hendak menggunakan value value dari variabel variabel numerik yang tersedia pada kotak listing variabel untuk mengontrol case filter.

Modul Praktikum

8. Perintah COMPUTE

Perintah Compute digunakan untuk melakukan perhitungan terhadap value - value dari varibel - variabel yang sudah ada maupun untuk variabel baru pada file data, perhitungan ini berlaku untuk semua case atau untuk case - case yang memenuhi kondisi tertentu. Apabila kita jalankan perintah Compute dari menu Trasform akan terlihat tampilan sebagai berikut :

	×
Target Variable: = TypetLabel: = TypetLabel: = Image: TypetLabel: = I	

Keterangan :

- a. Kotak Target Variable ; Digunakan untuk mengisikan nama variabel target, nama variabel target bisa berupa nama variabel yang sudah ada pada file data
- b. Kotak Numeric Expression; Digunakan untuk menyusun ekspresi yang akan digunakan untuk transformasi variabel target. Untuk mengisikan ekspresi tersebut bisa menerapkan operasi dan angka yang ada pada calculator pad, bisa dengan memindahkan nama variabel dari kotak listing variabel atau memindahkan fungsi fungsi yang diperlukan dari kotak listing fungsi atau bisa pula dengan mengetikan langsung pada kotak Numeric expression.

Tombol If...; Digunakan untuk menentukan kondisi logika bila dalam transformasi variabel memenuhi kondisi tertentu, yang perlu diperhatikan disini adalah bahwa tombol Include if case satisfied condition harus dipilih sebelum menyusun logika tersebut, defaultnya adalah pilihan Include all case.

9. Perintah COUNT

Perintah count digunakan untuk menghitung jumlah cacah value dan seluruh variabel yang di daftar yang memenuhi syarat value yang telah didefinisikan pada tiap case, apabila kita jalankan perintah COUNT dari menu transfrom maka akan terlihat tampilan sebagai berikut :

🔀 Count Occurrence	s of Values within Cases	×
Target Variable: ↓ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑	Target Label: Variables:	OK <u>Easte</u> <u>B</u> eset Cancel Help
	Define Values	

- a. Kotak Target Variable; Fungsi kegunaannya sama dengan pada perintah COMPUTE
- b. Kotak Terget Label; Pada kotak ini diisikan dengan label dari variable target
- c. Kotak Variables; digunakan untuk mendaftar satu atau lebih variabel dari kotak listing variabel, dengan syarat variable variable tersebut harus mempunyai tipe yang sama.
- d. Tombol Define Value; Digunakan untuk mendefinisikan syarat value yang harus dipenuhi, sebelum mendefinisikan syarat value harus dipilih dahulu salah satu dari 6 spesifikasi syarat berikut :
 - Value; Digunakan untuk menghitung cacah value yang berharga sama dengan harga yang didefinisikan

System Missing; Digunakan untuk menghitung cacah value yang berharga system missing value

System or user Missing; Digunakan untuk menghitung cacah value yang berharga missing

Range dengan Interval; Digunakan untuk menghitung cacah value yang berharga lebih besar atau sama dengan awal interval dan lebih kecil aau sama dengan akhir interval

- Range lebih kecil atau sama dengan interval; Digunakan untuk menghitung cacah value yang berharga lebih besar atau sama dengan awal interval dan lebih kecil atau sama dengan akhir interval.

- Range dengan interval; Digunakan untuk menghitung cacah value yang berharga lebih besar atau sama dengan awal interval dan lebih kecil atau sama dengan akhir interval.

Setelah mengisi syarat value, maka syarat value dapat dipindahkan ke kotak value to count dengan menekan tombol Add, jika menghendaki syarat lebih dari satu dapat diulang kembali.

Untuk mengedit syarat value yang telah dipindahkan ke kotak value to count maka pilih syarat value tersebut dan edit pada kotak value selanjutnya tekan tombol *Change*.

Untuk menghapusnya pilih syarat value tersebut kemudian tekan tombol Remove

10. Perintah RECODE

Perintah Recode digunakan untuk memodifikasi atau menggantikan value dari variabel yang didaftar menjadi value dengan nilai baru. Apabila perintah Recode dijalankan dari menu transform maka akan muncul pilihan :

- Into same variables yakni recode untuk variable yang sudah ada
- Into Different Variables yakni recode untuk membentuk variabel baru
- a. Memodifikasi value variable dengan Recode

Modul Praktikum

Untuk memodifikasi value variabel maka dipilih perintah *Into Same Variables* sehingga akan muncul kotak dialog sbb:

🔀 Recode into Same	Variables	×
no a { nim a } nama [nama] a { ik [ik] w tas	⊻ariables:	OK. <u>Paste</u> <u>R</u> eset Cancel
 	 	Help

Tombol Old and New Value....

- Tombol ini digunakan untuk menentukan value yang akan diganti dan value pengganti dari variabel yang didaftar, setelah mengisi kotak old value dan new value maka klik tombol Add, ulangi jika ingin menyusun ketentuan yang lain. Membentuk variabel baru dengan Recode
- Membentuk variabel baru dengan Recode
 Untuk membentuk variabel baru maka dipilih perintah Into Different Variables sehingga akan muncul kotak dialog Sbb:

no no	Input ⊻ariable -> Output Variable: Name:
▲, nama [nama] ▲, ik [ik] ♣ tgs ♣ uts	Label:
₩ uas	If It and New Values
	OK <u>P</u> aste <u>R</u> eset Cancel Help

C. PRAKTEK

- 1. Menyisipkan, transpose data, mengcopi data, dan mengurutkan data
 - a. Buka file data (Latihanku.sav)
 - b. Sisipkan variabel JUR diantara variabel NIM dan NAMA, isilah dengan Jurusan MI, SI, TK, TI, KA dst
 - c. Copilah case no 1-3, letakan di baris 12
 - d. Hapus variabel tugas, lihat hasilnya dan simpan dengan nama MODUL 2
 - e. Buka kembali file MODUL 1 lalu pilih data, transpose dan masukan tgs, uts dan uas pada kotak variabel(s) dengan cara mengklik tanda panah
 - f. Pindahkan nama ke kotak Name variabel dengan cara meng-klik tanda panah lalu klik OK, lihat hasilnya dan simpan dengan nama TRANS
 - g. Buka kembali MODUL 1, lakukan perintah Sort secara urut naik berdasarkan nama, simpan dengan nama URUT 1. Urutkan juga berdasarkan NIM secara urut turun, simpan dengan nama URUT 2.
- 2. Perintah Compute
 - a. Buka file data anda
 - b. Klik menu Transform, Compute sehingga keluar kotak dialog compute Variabels
 - c. Isi kotak target Variable dengan nama Rerata
 - d. Isi kotak Numerik Expresion denga (tgs + uts + uas) / 3 dan klik OK
 - e. Simpan dengan nama Rerata.

m	📾 modul 1 - SPSS for Windows Data Editor								
Eile	<u>E</u> dit	<u>V</u> iew <u>D</u> at	ta <u>T</u> ransform <u>A</u> nalyz	ze <u>G</u> r	aphs <u>l</u>	<u>J</u> tilities	<u>W</u> indo	w <u>H</u> elp	
2	26 1 1 1 1 1 1 1 1 1 1								
1:no	1:no 🛛								
	no	nim	nama	jk	tgs	uts	uas	rerata	
1	1	55233	Doni	1	70	50	60	60,00	
2	2	55004	Kiki	2	80	52	70	67,33	
3	з	55223	Ruli	2	75	60	50	61,67	
4	4	56780	Dimas	1	63	72	60	65,00	
5	5	52490	Riko	1	85	70	75	76,67	
6	6	53256	Rika	2	80	80	82	80,67	
7	7	54200	Tomas	1	71	72	80	74,33	
8	8	52550	Arum	2	60	75	90	75,00	
9	9	54443	Mayang	2	68	80	60	69,33	
10	10	52439	Puguh	1	90	70	70	76,67	

3. Perintah Count

1

- a. Buka file data anda
- b. Klik menu Transform, Count sehingga muncul kotak dialog Count Occurences of values within cases
- c. Isi kotak target Variables dengan nama Cacah1
- d. Isi kotak Numeric Variables dengan memindahkan variable yang telah tersimpan ke kotak Numeric Variables dengan cara mengklik tanda panah.

Modul Praktikum

- e. Tekan tombol define value, pilih range isi kotak lowest trought dengan nilai 60; tekan Add; tekan Continue
- f. Tekan tombol IF; tekan Include if Case Statisfies Condition; tulis jk=1 pada kotak yang tersedia; tekan Continue; tekan OK.
- g. Simpan dengan nama file Cacah1

🇰 ma	🖩 modul 1 - SPSS for Windows Data Editor								
<u>F</u> ile	<u>E</u> dit	<u>V</u> iew <u>D</u> at	ta <u>T</u> ransform <u>A</u> nalyz	:e <u>G</u> r	aphs <u>l</u>	<u>U</u> tilities	<u>W</u> indo	w <u>H</u> elp	
<u> </u>	3 😂	💷 🖂	🔤 🏊 😰 🏘 M	ГТТ	III 1	III 🦻			
1:no	1:00								
	no	nim	nama	jk	tgs	uts	uas	rerata	cacah1
1	1	55233	Doni	1	70	50	60	60,00	2,00
2	2	55004	Kiki	2	80	52	70	67,33	
3	з	55223	Ruli	2	75	60	50	61,67	
4	4	56780	Dimas	1	63	72	60	65,00	3,00
5	5	52490	Riko	1	85	70	75	76,67	3,00
6	6	53256	Rika	2	80	80	82	80,67	
7	7	54200	Tomas	1	71	72	80	74,33	3,00
8	8	52550	Arum	2	60	75	90	75,00	
9	9	54443	Mayang	2	68	80	60	69,33	
10	10	52439	Puguh	1	90	70	70	76,67	3,00
11									

4. Perintah RECODE

- a. Buka file data anda
- b. Klik menu Transform; Recode; Into Defference Variables, sehingga muncul kotak dialog Recode Into Deference Variable
- c. Isi kotak Numeric variable dengan variabel Rerata
- d. Isi kotak output dengan Nilai; klik Change
- e. Klik tombol Old &New Values, muncul kotak dialog
- f. Klik Output variables Are Strings
- g. Klik Range; isi kotak Higest Trought dengan nilai 80; klik value, ketik A; klik Add.
- h. Klik Range; isi kotak Trought dengan nilai 65 -79; klik value; ketik B, klik Add.
- i. Klik Range; isi kotak Trought dengan nilai 50 64; klik value; ketik C, klik Add.
- j. Klik Range; isi kotak Trought dengan nilai 40 49; klik value; ketik D, klik Add.
- k. Klik Range; isi kotak Lowest Trought dengan nilai 40; klik value; ketik E, klik Add
- l. Klik Continue; OK
- m. Simpan dengan nama file Nilai

🗰 modul 1 - SPSS for Windows Data Editor Utilities File Edit View Data Transform Analyze Graphs Window Help 🛎 🖬 🚳 🔍 📼 🔚 🕼 🕼 🔺 👘 📰 🏛 🔣 🐼 🐼 nilai no nim nama jk tgs uts uas rerata cacah 1 1 55233 Doni 70 50 60 60,00 2,00 С 1 2 2 55004 Kiki 2 80 52 70 67,33 в 3 55223 2 75 60 50 з Ruli 61,67 с 4 4 56780 1 63 72 60 65,00 Dimas в 3,00 5 52490 1 85 75 76,67 5 Riko 70 3,00 в 6 6 53256 Rika 2 80 80 82 80.67 А 7 7 54200 Tomas 1 71 72 80 74,33 3,00 в 8 52550 2 60 75 90 8 Arum 75,00 в 9 9 54443 2 68 80 60 69,33 в Mayang 70 52439 1 90 70 76.67 в 10 10 3.00 Puauh

MODUL III

PROSEDUR FREQUENCIES, DESCRIPTIVES DAN CROSSTABS

A. MAKSUD DAN TUJUAN

1. MAKSUD

- Menggunakan prosedur Frequencies dan Descriptives dalam menu Analyze, untuk menyajikan dan menganalisis data yang sudah disimpan dalam file data.
- Mengenalkan prosedur Crosstabs sebagai salah satu metode analisis data statistik
- 2. TUJUAN
 - a. Mengetahui perintah perintah untuk analisis data dalam menu Analyze
 - b. Trampil menggunakan perintah perintah dalam prosedur Frequencies dan Descriptives
 - c. Agar mahasiswa dapat menyajikan data dalam tabulasi silang dengan prosedur Crosstabs

B. TEORI SINGKAT

Setelah data diperoleh, biasanya kemudian dianalisis dengan terlebih dahulu menghitung nilai statistiknya, misal rata - rata, median, modus, simpangan baku, dan kemiringan. Dalam SPSS mempunyai fasilitas untuk menghitung nilai - nilai statistik dan analisisnya, yang tersedia dalam menu analyze.

Dalam submenu Descriptives statistic tersebut diantaranya terdapat prosedur Frequencies, Descriptives dan Crosstabs.

1. PROSEDUR FREQUENCIES

Prosedur frequencies digunakan untuk membuat tabel frekuensi, yaitu berisi cacah harga semua case dari variabel variabel dalam daftar, cacah persentase semua case, cacah persentase valid (tanpa missing value), dan persentase kumulatif.

Bila dipilih Frequencies dari menu Desciptive statistic akan keluar tampilan seperti berikut :

Spesifikasi minimum dari prosedur ini adalah memindahkan sebuah variabel ke kotak *Variable(s)*. check box pada display frequency bila ditandai akan dihasilkan tabel frekuensi, selain itu terdapat tiga tombol lain yaitu *statistidcs, charts dan format*

Frequencies	⊻ariable(s):	OK Paste Reset Cancel
♥ uas ♥ rerata ♥ Display frequency tables Statistic	s	

a. tombol statistics; Tombol ini digunakan untuk menampilkan deskripsi univariat dari variabel numerik yang ada di daftar, antara lain ukuran tendensi sentral (Mean, Median, Modus, Jumlah), ukuran letak (Kuartil, Desil, Persentil), ukuran Dispersi (Nilai maksimum, nilai minimum, Range, Varians, Standard Deviasi), Kemiringan (Skewness) dan Kurtosis. Statistik - statistik yang diinginkan dapat diminta dengan menandai check box yang tersedia, bila tombol tersebut diklik maka keluar kotak dialog sebagai berikut :

	Frequencies: Statistics	×
~	Percentile Values Quartiles Cut points for 10 equal groups Percentile(s): Add Change Bemove	Central Tendency Continue Cancel Cancel Help Sum Values are group midpoints
5	Dispersion Std. deviation Minimum Variance Maximum Range S. <u>E</u> . mean	Distribution Ske <u>w</u> ness <u>Kurtosis</u>

b. Tombol chart; Tombol ini digunakan untuk menampilkan chart bar atau histogram pada chart carousel dari tabel frekuensi yang dihasilkan, bila tombol ini di klik maka akan muncul kotak dialog sebagai berikut :

requencies: Charts 🛛 🛛					
Chart Type	Continue				
• None	Cancel				
C Bar charts	Help				
C History					
➡ Histograms ➡ With normal curve					
Chart Values © Erequencies © Pere	entages				

Tombol Format; Untuk menentukan format tabel frekuensi, yaitu format halaman dan format pengurutan.

Modul Praktikum

2. PROSEDUR DESCRIPTIVES

Prosedur ini juga digunakan untuk menampilkan deskripsi statistik univariat dari variabel numerik pada daftar (sebagaimana yang juga bisa dilakukan oleh prosedur Frequencies). Bedanya adalah prosedur ini tidak menampilkan susunan value terurut dalam tabel frekuesi. Adapun kotak dialog yang muncul jika prosedur Descriptives dipilih adalah seperti gambar berikut :

🔀 Descriptives		×
 Ino Igs Uts uas rerata cacah1 	Yariable(s):	OK <u>P</u> aste <u>R</u> eset Cancel Help
Save standardized va	lues as variables	Options

Spesifikasi minimum dari prosedur ini adalah memindahkan sebuah variabel ke kotak Variable(s). dibandingkan dengan prosedur frekuensi, prosedur deskriptif ini sangat efisien untuk menampilkan berbagai ukuran statistik univariat dari banyak variabel sekaligus.

Tombol option

Tombol ini menampilkan mean, sum, ukuran penyebaran (dispersi), distribusi (kemiringan dan kurtosis) dan tipe pengurutan, seperti gambar berikut :

Descriptives: O	×	
✓ Mean Dispersion ✓ ✓ Std. deviation ✓ ✓ Variance ✓ Bange	 ✓ Minimum ✓ Maximum ✓ S.<u>E</u>. mean 	Continue Cancel Help
Distribution	☐ Ske <u>w</u> ness	
Display Order Variable list Alphabetic Asgending mea Descending mea		

3. PROSEDUR CROSSTABS

Prosedur Crosstabs atau Xtabs digunakan untuk menampilkan tabuolasi silang (tabel kontingensi) yang menunjukkan distribusi bersama, deskripsi statistik bivariatnya dan berbagai pengujian dari 2 variabel atau lebih, khususnya variabel berbentuk kategori.

Perintah ini juga digunakan untuk mengetahui apakah ada hubungan diantara 2 variabel

- Ada 3 macam kotak untuk menampung variabel variabel yang berperan dalam pengelompokkan tabel yakni :
- 1. Kotak Rows; Untuk mendaftar variabel variabel yang casenya akan ditampilkan secara baris (sebagai heading baris tabel)
- 2. Kotak Columns; Untuk mendaftar varibel variabel yang casenya akan ditampilkan secara kolom (sebagai heading kolom tabel)
- 3. Kotak Layers; Untuk mendaftar variabel variabel kontrol, yakni variabel variabel yang akan mengelompokkan tabel per case variabel variabel tersebut

Apabila check box suppress tables ditandai maka pada output akan menampilkan statistik yang dipilih dan tidak menampilkan tabulasi silang.

Kotak Suppress Table....

Apabila kotak ini ditandai maka pada output hanya menampilkan statistik yang dipilih, sedang tabulasi silangnya tidak ditampilkan.

Tombol Statistics....

Tombol ini digunakan untuk menampilkan statistik dua variabel dari variabel baris dan variabel kolom

Tombol Cell....

Tombol ini digunakan untuk menentukan isi sel. Defaultnya isi sel berupa cacah case pada sel tersebut, selain default tersebut dapat pula ditambahkan :

- 1. Expected; Banyaknya case yang diharapkan pada sel bila variabel baris dan variabel kolom independen
- 2. Rows; Persentase baris
- 3. Column; Persentase kolom
- 4. Toral; persentase total
- 5. Unstandardized residual; residual yang tak terstandar
- 6. Standardized residual; residual yang terstandar, residual yang dibagi akar kuadrat dari expected
- 7. Adjusted standardized residual; residual dibagi estimasi standar errornya

Tombol format...

Tombol ini digunakan untuk menentukan format tabel yang dihasilkan. Pada kotak labels digunakan untuk menentukan pemunculan label dan value variabel, pada kotak row order digunakan untuk menentukan modus pengurutan.

Praktek Statistik

Sedangkan check box Boxes Araund cells dan Index of Tables masing - masing untuk menentukan ada atau tidaknya garis pada sel tabel dan untuk menentuukan penampilan indeks.

C. PRAKTEK

- 1. Untuk perintah Frequencies
 - a. Buka file data anda
 - b. Klik menu Analyze, Frequencies sehingga tampil kotak dialog frequencies
 - Isi kotak Variable dengan TGS; klik tombol statistics sehingga muncul kotak dialog frequencies statistics c.
 - d. Klik Quartiles; Percentiles isi dengan nilai 75; klik mean, median, mode, sum; klik Standard Deviation, Variances, Minimum, Maximum
 - Klik Continue; OK e.
 - Simpan output dengan nama file Frekuensi f.
- 2. Untuk perintah Descriptif
 - a. Buka file data anda
 - Klik menu Analyze; Descriptives Statistics; Descriptives, sehingga muncul kotak dialog Descriptives b.
 - c. Isi kotak variable dengan TGS; klik tombol option sehingga muncul kotak dialog Descriptives
 - d. Klik mean, sum, standard deviation, Variances, minimum, maximum
 - Klik Continue; OK e.
 - f. Simpan output dengan nama file Deskriptif.
- Untuk perintah Crosstabs 3.
 - a. Buka file data anda
 - b. Dari menu Transform pilih compute, pada kotak target variable tuliskan mean, dan pada kotak Numeric Expression masukan Tgs, Uts dan uas untuk menghitung rata - rata dari ketiga nilai tersebut.
 - Gunakan perintah Recode untuk membuat variabel baru dengan nama variabel NILAL dari variabel ini dengan c. ketentuan :
 - " Kurang " untuk nilai < 60 " Cukup " untuk nilai 60 80

 - " Baik " untuk nilai > 80
 - d. Dari menu Analyze; Descriptive Statistics; klik Crosstabs sehingga tampil kotak Crosstabs
 - Pindahkan Variabel JK ke kotak Row(s) dengan mengklik tanda panah e.
 - Pindahkan variabel NILAI ke kotak Column(s) dengan mengklik tanda panah f.
 - Tekan tombol Cells sehingga muncul kotak dialog Crosstabs, Cell Display, tandai Check Box Expected, row, column, g. total, standardize
 - h. Klik Continue; OK
 - Simpan dengan nama file Crosstabs i.

MODUL IV PENGUJIAN RATA-RATA SATU DAN DUA SAMPEL

A. MAKSUD DAN TUJUAN

- 1. MAKSUD
 - Menguji data dengan pengujian rata-rata satu sampel
 - Menguji data dengan pengujian rata-rata dua sampel
- 2. TUJUAN
 - Mahasiswa mampu menguji data dengan pengujian rata-rata satu sampel
 - Mahasiswa mampu menguji data dengan pengujian rata-rata dua sampel

B. TEORI SINGKAT

Hipotesis dapat diartikan sebagai dugaan mengenai suatu hal, atau hipotesis merupakan jawaban sementara suatu masalah, atau juga hipotesis dapat diartikan sebagai kesimpulan sementara tentang hubungan suatu variabel dengan satu atau lebih variabel yang lain. Namun menurut Prof. Dr. S. Nasution definisi hipotesis adalah pernyataan tentatif yang merupakan dugaan mengenai apa saja yang sedang kita amati dalam usaha untuk memahaminya.

- Fungsi
- Untuk menguji kebenaran suatu teori
- Memberikan gagasan baru untuk mengembangkan suatu teori.
- Memperluas pengetahuan peneliti mengenai suatu gejala yang sedang dipelajari.
- Pengujian hipotesis
 - Hipotesis yang baik selalu memenuhi dua pernyataan, yaitu :
 - Menggambarkan hubungan antar variabel.
 - Dapat memberikan petunjuk bagaimana pengujian hubungan tersebut.

Oleh karena itu hipotesis perlu dirumuskan terlebih dahulu sebelum dilakukan pengumpulan data. Hipotesis ini disebut **Hipotesis Alternatif** (Ha) atau **Hipotesis kerja** (Hk) atau Hi . Hipotesis kerja atau Hi merupakan kesimpulan sementara dan hubungan antar variabel yang sudah dipelajari dari teori-teori yang berhubungan dengan masalah tersebut. Untuk pengujian Hi perlu ada pembanding yaitu **Hipotesis Nol** (Ho). Ho disebut juga sebagai Hipotesis Statistik, karena digunakan sebagai dasar pengujian.

Langkah atau prosedur untuk menentukan apakah menerima atau menolak Hipotesis Statistik (**Ho**) disebut Pengujian Hipotesis. Oleh karena itu dalam pengujian Hipotesis, penarikan kesimpulan mengenai populasi didasarkan pada informasi sampel bukan populasi itu sendiri, maka kesimpulannya dapat saja keliru. Dalam Pengujian Hipotesis terdapat dua kekeliruan atau galat, yaitu :

Kasimpulan	Keadaan sebenarnya Ho				
Keshipulan	Ho benar	Ho salah			
Terima Ho	tepat	Galat jenis II (β)			
Tolak Ho	galat jenis I (α)	tepat			

Penarikan kesimpulan dinyatakan tepat apabila kita menerima **Ho**, karena memang **Ho** benar, atau menolah **Ho**, karena memang **Ho** salah. Apabila kita menyimpulkan menolak **Ho** padahal **Ho** benar, maka kita telah melakukan kekeliruan yang disebut kekeliruan atau galat jenis I (α). Begitu pula sebaliknya jika kita menyimpulkan untuk menerima **Ho** padahal **Ho** salah, maka kita telah melakukan kekeliruan yang disebut kekeliruan atau galat jenis I (α).

Jika nilai α diperkecil, maka akan menjadi β besar. Nilai α biasanya ditetapkan sebesar 0,05 atau 0,01. Jika $\alpha = 0,05$, artinya 5 dari setiap 100 kesimpulan kita akan menolak **Ho**, yang seharusnya diterima. Harga (1- β) disebut Kuasa Uji atau Kekuatan Uji.

Teknik dalam pengujian hipotesis dilakukan berdasarkan :

Pengujian Satu Pihak

- $Ho: \alpha = \alpha o$
- H1: $\alpha > \alpha o$
- H1: $\alpha < \alpha o$
- Pengujian Dua Pihak
- **Ho** : $\alpha = \alpha \mathbf{0}$
- **Η**ι : α # αο

Pengujian Rata-rata Satu Sampel

Pengujian rata-rata satu sampel dimaksudkan untuk menguji nilai tengah atau rata-rata populasi μ sama dengan nilai tertentu μ o, lawan hipotesis alternatifnya bahwa nilai tengah atau rata-rata populasi μ tidak sama dengan μ o. Jadi kita akan menguji :

Ho : $\alpha = \alpha \mathbf{o}$ lawan **Hi** : $\alpha \# \alpha \mathbf{o}$

Ho merupakan hipotesa awal.

2. Pengujian Rata-rata Dua Sampel

Untuk pengujian rata-rata dua sampel terdapat 2 jenis data :

- Dua Sampel Berpasangan.
 - Artinya kedua sampel bersifat mutually exclusive (saling asing) dan banyaknya pengamatan (ulangan) sama pada masing-masing sampel.
- Sampel Bebas / Independen.
 - Pada pengujian rata-rata dua sampel berpasangan, banyaknya nilai pengamatan harus sama (n1=n2), sedangkan pada dua sampel yang bebas banyaknya pengamatan tidak harus sama.

Praktek Statistik

C. PRAKTEK

1. Pengujian Rata-rata Satu Sampel

Seorang mahasiswa melakuan penelitian mengenai galon susu murni yang rata-rata isinya 10 liter. Telah diambil sampel secara acak dari 10 botol yang telah diukur isinya, dengan hasil sebagai berikut : 10,2; 9,7; 10,1; 10,3; 10,1; 9,8; 9,9; 10,4; 10,3; 9,8. Dengan $\alpha = 0,01$

- Analisa secara manual :
- 1. Hipotesis **Ho** : $\alpha = 10$ lawan **Hi** : $\alpha \# 10$
- 2. Uji statistik t (karena α tidak diketahui atau n < 30).
- 3. $\alpha = 0.01$
- 4. Wilayah kritik : $t \le t \alpha/2(n-1)$ atau $t \ge t \alpha/2(n-1)$.
- 5. Perhitungan, dari data : rata-rata x = 10.06 dan simpangan baku sampel s = 0.2459.

$$t = \frac{x - \mu}{s/\sqrt{n}} = 0,772$$

Karena t = 0,772 terletak diantara -3,250 dan 3,250 disimpulkan untuk menerima **Ho**, artinya pernyataan bahwa rata-rata isi galon susu murni 10 liter dapat diterima.

Analisa menggunakan SPSS :

- 1. Masukkan data diatas pada Data View, namun sebelumnya kita harus menentukan nama dan tipe datanya pada Variable View.
- 2. klik Menu Analyze Compare Means One Sample T-Test.
- 3. Sehingga menghasilkan hasil analisa sebagai berikut :

T-Test

[DataSet0]

One-Sample Statistics						
	N	Mean	Std. Deviation	Std. Error Mean		
ISI GALON	10	10.060	.2459	.0777		

One-Sample Test							
Test Value = 10					0		
				Mean	99% Cor Interval Differ	nfidence of the ence	
	t	df	Sig. (2-tailed)	Difference	Lower	Upper	
ISI GALON	.772	9	.460	.0600	193	.313	
	ISI GALON	t ISI GALON .772	t df ISI GALON .772 9	One-Sample Test Test Valu t df Sig. (2-tailed) ISI GALON .772 9 .460	One-Sample Test Test Value = 10 Mean t df Sig. (2-tailed) Mean ISI GALON .772 9 .460 .0600	One-Sample Test Test Value = 10 99% Cor Interval Differ t g9% Cor Interval Differ t df Sig. (2-tailed) Difference Lower ISI GALON .772 9 .460 .0600 193	

Keterangan hasil analisa : Std error = Standar Error T = nilai hitung Df = derajat kebebasan Sig (2-tailed) = probabilitas ($\alpha/2$) Mean difference = perbandingan rata-rata

Ho diterima apabila sig > $(\alpha/2)$, Ho ditolak apabila sig < $(\alpha/2)$,

2. Pengujian Rata-rata Dua Sampel

-	Mahasiswa aktif	Mahasiswa Tidak Aktif
	7	4
	8	3
	5	5
	3	4
	5	2

Langkah penyelesaiannya adalah sebagai berikut :

- 1. Masukkan data diatas pada Data View, namun sebelumnya kita harus nenentukan nama dan tipe datanya pada Variable View.
- 2. Klik Analyze >> Compare Means >> Paired Samples T-Test

Maka akan muncul tampilan sebagai berikut :

		Mean	Ν	Std. Deviation	Std. Error Mean
Pair	Mahasiswa Aktif	5,60	5	1,949	,872
1	Mahasiswa Tidak Aktif	3,60	5	1,140	,510

Paired Samples Correlations

	Ν	Correlation	Sig.
Pair Mahasiswa Aktif & 1 Mahasiswa Tidak Aktif	5	-,202	,744

Paired Samples Test

			Paired Differences						
				Std Error	95% Cor Interva Differ	95% Confidence Interval of the Difference			
		Mean	Std. Deviation	Mean	Lower	Upper	t	df	Sig. (2-tailed)
Pair 1	Mahasiswa Aktif - Mahasiswa Tidak Aktif	2,000	2,449	1,095	-1,041	5,041	1,826	4	,142

Keimpulan H₀ diterima karena p-value $\alpha/2 > 0,05$

2. misal kita akan menguji sampel pada taraf nyata α = 0.05 bahwa masa putar roda pada sepeda 1 berbeda dengan sepeda
 2. Data masa putar roda (menit) kedua sepeda tersebut adalah :

		Masa Putar (menit)							
sepeda 1	55	58	55	52	59				
sepeda 2	65	59	60	64	62	65	58		

Langkah penyelesaiannya adalah sebagai berikut :

- 1. Masukkan data diatas pada Data View, namun sebelumnya kita harus nenentukan nama dan tipe datanya pada Variable View.
- 2. Klik Analyze >> Compare Means >> Independent Samples T-Test

Tugas:

1. Pengujian Rata-rata Satu Sampel

Seorang pengusaha berpendapat bahwa rata-rata penjualan perhari karyawan-karyawannya adalah sebesar Rp. 1.020,00 dengan alternatif tidak sama dengan itu. Untuk maksud pengujian pendapatnya, pengusaha tersebut melakukan wawancara terhadap 20 orang karyawannya yang dipilih secara acak. Dengan menggunakan $\alpha = 0,05$. ujilah pendapat tersebut dan berikan analisa anda. Hasil wawancaranya adalah sebagai berikut.

Nama	Penjualan (Rp.)		Nama	Penjualan (Rp.)
aan	1000	\mathbf{O}	ila	930
andi	980		osin	1080
beril	880		mima	1200
bona	970		neni	1040
cici	850		sila	1040
dimas	750		Siqi	850
erik	770		Tata	950
gogon	920		Tita	1100
Hari	870		Wina	1110
heru	900		zula	990

Tuliskan hasil analisanya dibawah ini, dan apakah Ho diterima?

Pengujian Rata-rata Dua Sampel

Seorang guru berpendapat bahwa tidak ada perbedaan nilai rata-rata murid kelas A dan murid kelas B, namun dengan alternatif ada perbedaan. Untuk menguji pendapat tersebut, kemudian dilakukan penelitian berdasarkan penarikan sampel secara acak dimana ada 8 murid kelas A dan 6 murid kelas B. Ternyata hasil penelitian nilai siswa adalah sebagai berikut :

Kelas A : 7,5 ; 8,5 ; 7 ; 7,3 ; 8 ; 7,7 ; 8,4 ; 8,5

Kelas B : 7 ; 6,7 ; 7,3 ; 7,5 ; 6,6

Dengan menggunakan $\alpha = 5\%$, uji pendapat tersebut.

2.

MODUL V ANALISA DATA KATEGORIK

A. MAKSUD DAN TUJUAN

- 1. MAKSUD
 - Menganalisa data dengan analisa data kategorik
- TUJUAN 2
- Mahasiswa mampu menganalisa data dengan analisa data kategorik

B. TEORI SINGKAT

Dalam bab ini kita akan membahas analisis data kategorik (analysis of categorical data) menggunakan uji khi kuadrat (chi-square test), yaitu uji khi kuadrat untuk satu variabel kategorik (one categorical variable) yang disebut uji kebaikan suai khi kuadrat (chi-square goodness-of-fit test) dan uji khi kuadrat untuk dua variabel kategorik (two categorical variable) yang disebut uji khi kuadrat untuk kebebasan (chi square test for independence).

- Dalam pengujian hipotesis, kriteria untuk menolak atau tidak menolak H₀ berdasarkan p-value • adalah sebagai berikut:
 - Jika P-value $< \alpha$, maka H₀ ditolak
 - Jika P-value > α , maka H₀ tidak dapat ditolak.
- dalam program SPSS digunakan istilah significance (yang disingkat Sig) untuk P-value; dengan kata lain **P-value = Sig.**

<u>uji kebaikan suai khi kua</u>drat (χ^2)

digunakan untuk menguji apakah frekuensi data yang diamati dari suatu variable kategorik sesuai dengan frekuensi harapan (expected frequencies).

Hipotesis untuk uji kebaikan suai khi kuadrat selalu berbentuk uji hipotesis dua sisi (two-sided atau two-tailed test) dengan hipotesis:

 $H_{0:}\pi_{i}=\pi_{i0}$

H₁ : tidak semua $\pi_i = \pi_{i0}$

Dimana :

 $i = 1, 2, 3 \dots k$

k = banyaknya kategori

 π_{i0} = probalitas atau proporsi atau frekuensi acuan.

Rumus chi-square test

Rumus untuk uji kebaikan suai (goodness-of-fit test) adalah sebagai berikut :

 $x^2 = \sum_{i=1}^k \frac{(o_i - e_i)^2}{e_i}$

Dengan derajat kebebasan =(k-1).

Dimana :

O_i = adalah frekuensi data yang diamati (observed frequencies).

e_i = adalah frekuensi harapan (expected frequencies) k

= banyaknya kategori.

Rumus untuk uji khi-kuadrat untuk kebebasan (chi-square test for independence)

$$x^{2} = \sum_{i=1}^{r} \sum_{j=1}^{c} \frac{(o_{ij} - e_{ij})}{e_{ij}}$$

Derajat kebebasan (r-1)(c-1)

Dimana :

 o_{ii} : adalah frekuensi data yang di observasi pada baris ke- i kolom ke- i

 e_{ii} : adalah frekuensi harapan pada baris ke- i kolom ke- i

 n_i : jumlah frekuensi pada baris baris ke- i

 $n_{,i}$: jumlah frekuensi pada baris kolom ke- i

 $n_{\rm or}$: jumlah total frekuensi

- r : adalah jumlah baris (row)
- c : adalah jumlah kolom (column)

C. PRAKTEK

1. Uji kebaikan suai dengan frekuensi harapan sama.

Sebagai contoh uji kebaikan suai khi kuadrat untuk model dengan frekuensi harapan sama (equal expected frequencies) akan digunakan data sebagai berikut :

Sebuah perusahaan pasta gigi ingin memasarkan pasta gigi dengan rasa : strawberry, vanilla, coklat, jeruk, dan nanas. Perusahaan tersebut ingin mengetahui apakah konsumen memiliki preferensi tertentu terhadap kelima rasa pasta gigi tersebut. Perusahaan melakukan suatu survey dengan membagikan kemasan kecil dari setiap rasa pasta gigi kepada 200 konsumen. Data preferensi dari 200 konsumen terhadap kelima rasa pasta gigi tersebut adalah sebagai berikut :

Praktek Statistik

Rasa pasta gigi	Frekuensi konsumen yang memilih rasa tersebut
Strawberry	32
Vanilla	30
Coklat	28
Jeruk	58
Nanas	52
total	200

Apakah ada preferesi tertentu konsumen terhadap kelima rasa pasta gigi tersebut ? (gunakan $\alpha = 0,01$). **Penyelesaiannya :**

Ada 5 kategori untuk variable kategorik rasa pasta gigi, k= 5.

Frekuensi harapan $=\frac{200}{5}=40.$

Bentuk hipotesis :

 H_0 : preferensi terhadap kelima rasa pasta gigi sama.

H1: preferensi terhadap kelima rasa pasta gigi tidak sama.

Atau

 $H_{0:\pi_{strawberry}} = \pi_{vanila} = \pi_{coklat} = \pi_{jeruk} = \pi_{nanas} = 40$

 H_1 : tidak semua $\pi_{\text{strawberry}} = \pi_{\text{vanila}} = \pi_{\text{coklat}} = \pi_{\text{jeruk}} = \pi_{\text{nanas}}$ sama dengan 40.

Prosedur dengan SPSS

a. pada lembar **variable view** kita definisikan variabel **rasa pasta gigi** dengan nama **rasa** (dengan data value '1= strawberry'; '2=vanila'; '3=coklat'; '4=jeruk'; '5=nanas') dan variabel **frekuensi** dengan nama **frekuensi**.

	Name	Туре	Width	Decimals	Label	Values	Missing	Columns	Align	Measure	
1	rasa	Numeric	8	0	rasa pasta gigi	{1, strawberry}.	None	8	Right	Scale	
2	frekuensi	Numeric	8	0	frekuensi	None	None	8	Right	Scale	
3											
4											

b. pada lembar data view, masukkan data rasa dan frekuensi :

c. klik data lalu pilih weight cases.

Weight Cases		×
🖋 rasa pasta gigi [rasa]	Do not weight cases Weight cases by Frequency Variable: Ifrekuensi [frekuensi]	OK Paste Reset Cancel Help

- d. pilih option weight cases by. Masukkan variabel frekuensi. Lalu klik ok.
- e. lalu klik analyze pilih nonparametric Test, Chi-Square. Pindahkan variabel rasa pasta gigi [rasa] ke dalam box test variable(s). klik option. Pilih descriptive lalu klik continue.

f. kemudian klik ok maka akan di dapat hasil analisi chi-square goodness-of-fit test sebagai berikut : **Descriptive Statistics**

	Ν	Mean	Std. Deviation	Minimum	Maximum
rasa pasta gigi	200	3.34	1.419	1	5

Chi-Square Test Frequencies

rasa pasta gigi

	Observed N	Expected N	Residual
strawberry	32	40.0	-8.0
vanila	30	40.0	-10.0
coklat	28	40.0	-12.0
jeruk	58	40.0	18.0
nanas	52	40.0	12.0
Total	200		

Praktek Statistik

Test Statistics

	rasa pasta gigi
Chi-Square(a)	19.400
df	4
Asymp. Sig.	.001

a 0 cells (.0%) have expected frequencies less than 5. The minimum expected cell frequency is 40.0.

interpretasi hasil

untuk chi-square goodness-of-fit test, SPSS memberikan hasil $\chi^2 = 19.4$ dengan derajat kebebasan = k-1 = 5-1 = 4 dan P-value = 0.001. karena P-value=0.001 lebih kecil dari α =0.01, maka H₀: $\pi_{\text{strawberry}} = \pi_{\text{vanila}} = \pi_{\text{coklat}} = \pi_{\text{jeruk}} = \pi_{\text{nanas}} = 40$ di tolak.

Kesimpulan preferensi konsumen terhadap kelima rasa pasta gigi tidak sama.

2. Uji kebaikan suai dengan frekuensi harapan tak sama.

Contoh kasus utuk model ini adalah sebagai berikut :

Pabrik permen coklat kacang M&M menyatakan dalam setiap kantong permen coklat kacang kemasan 500 gram terdapat 30% permen warna coklat, 20% permen warna hijau, 20% warna merah, 20% warna kuning, dan 10% warna biru. Seorang naka membeli 1 kemasan permen tersebut dan di dalamnya terdapat 188 permen dengan rincian warna sebagai berikut ; 67 warna coklat, 24 warna hijau, 51 warna merah, 22 warna kuning, dan 24 warna biru. Gunakan taraf signifikan α =0.01, untuk menguji apakah distribusi warna permen sesuai dengan pernyataan pabrik. **Penyelesaianya:**

Bentuk hipotesis :

 $H_0: \pi_{coklat} = 56,4; \ \pi_{hijau} = 37,6; \ \pi_{merah} = 37,6; \ \pi_{kuning} = 37,6; \ \pi_{biru} = 18,8.$

H₁ :Distribusi warna permen coklat kacang tidak sesuai dengan $\pi_{coklat} = 56,4$; $\pi_{hijau} = 37,6$; $\pi_{merah} = 37,6$; $\pi_{kuning} = 37,6$; $\pi_{biru} = 18,8$.

Dimana :

 $\pi_{\text{coklat}} = 30\% \text{ x } 188 = 56.4.$ $\pi_{\text{hijau}} = 20\% \text{ x } 188 = 37.6.$ $\pi_{\text{merah}} = 20\% \text{ x } 188 = 37.6.$

$$\pi_{\text{kuning}} = 20\% \text{ x } 188 = 37,6$$

$$\pi_{\rm biru} = 10\% \ {\rm x} \ 188 = 18,8.$$

Prosedur dengan SPSS

a. pada lembar variable view kita definisikan variabel warna permen coklat dengan nama warna (dengan data value '1=coklat'; '2=hijau'; '3=merah'; '4=kuning'; '5=biru') dan variabel frekuensi dengan nama frekuensi.

	Name	Туре	Width	Decimals	Label	Values	Missing	Columns	Align	Measure
1	warna	Numeric	8	0	warna permen	{1, coklat}	None	8	Right	Scale
2	frekuensi	Numeric	8	0	frekuensi warna	None	None	8	Right	Scale
3										
4										

b. pada lembar data view, masukkan data rasa dan frekuensi :

V	1			
		warna	frekuensi	
1	1	coklat	67	
	2	hijau	24	
	3	merah	51	
	4	kuning	22	
	5	biru	24	
	6			

c. klik data lalu pilih weight cases.

Weight Cases		—
🛷 warna permen (warna)	 Do not weight cases Weight cases by Frequency Variable: Frequency Variable: 	OK Paste Reset Cancel
	Current Status: Do not weight cases	Help

d. pilih option weight cases by. Masukkan variabel frekuensi. Lalu klik ok.

lalu klik **analyze** pilih **nonparametric Test, Chi-Square.** Pindahkan variabel **warna permen [warna]** ke dalam box test variable(s). pada **Expected value.** Pilih **values** masukkan ke lima frekuensi harapan lalu klik **add.**

🔲 Chi-Square Test		X
🖋 frekuensi warna (freku	Test Variable List:	OK Paste Reset Cancel
Expected Range	Expected Values	Help
 Use specified range 	⊙ Values:	
Lower:	Add 56.4 37.6 37.6 37.6 37.6 18.8	Exact Options

- f. klik menu option. Pilih descriptive lalu klik continue. Lalu klik ok.
- g. maka akan di dapat hasil analisis chi-square goodness-of-fit test sebagai berikut : Descriptive Statistics

	Ν	Mean	Std. Deviation	Minimum	Maximum
warna permen	188	2.53	1.404	1	5

Chi-Square Test

Frequencies

warna permen						
	Observed N	Expected N	Residual			
coklat	67	56.4	10.6			
hijau	24	37.6	-13.6			
merah	51	37.6	13.4			
kuning	22	37.6	-15.6			
biru	24	18.8	5.2			
Total	188					
		Test Stati	stics			
		warna permen				
Chi-Squa	ure(a)	19.598				

4

001

a 0 cells (.0%) have expected frequencies less than 5. The minimum expected cell frequency is 18.8

interprestasi hasil

Asymp. Sig

df

karena P-value=0.001 lebih kecil dari α =0.01, maka H₀ : π_{coklat} =56,4; π_{hijau} = 37,6; π_{merah} =37,6; π_{kuning} =37,6; π_{biru} = 18,8. **Ditolak**

Kesimpulan distribusi warna permen coklat kacang tidak sesuai dengan pernyataan pabrik.

3. Uji khi kuadrat (χ^2) untuk kebebasan

Uji khi kuadrat (χ^2) untuk kebebasan (chi-square (χ^2) test for independence) atau disebut juga **contingency-table analysis** digunakan untuk menguji apakah dua variabel kategorik bersifat independen atau dependen. Sebagai contoh kasusnya sebagai berikut :

Seorang penegak hukum mengklasifikasi tindakan kriminal menjadi dua tipe: 'dengan kekerasan' atau 'tanpa kekerasan'. Suatu investigasi dilakukan untuk mempelajari tipe tindak kriminal tergantung pada usia pelaku tindak kriminal tersebut. Suatu sampel acak dari 100 pelaku tindak kriminal diambil dari data kepolisian. Data ini di tabulasi-silangkan sebagai berikut :

	Kelompok usia (dalam tahun)				
Tipe tindak kriminal	Dibawah 25	25-49	50 keatas		
Dengan kekerasan	15	30	10		
Tanpa kekerasan	5	30	10		

Apakah data tersebut menunjukkan bahwa tipe tindak kriminal tergantung pada usia pelaku? gunakan $\alpha = 0.05$. **penyelesaiannya**

hipotesis:

- H₀: tipe tindak kriminal **tidak** tegantung pada usia pelaku.
- H_1 : tipe tindak kriminal tergantung pada usia pelaku.

Prosedure dengan SPSS

a. pada lembar variable view kita definisikan variabel tipe tindak kriminal dengan nama kriminal (dengan data value '1=dengan kekerasan' ; '2=tanpa kekerasan'), variabel kelompok usia dengan nama usia (dengan data value '1= dibawah 25'; '2=25-49'; '3=50 keatas') dan variabel frekuesi dengan nama frekuensi.

	- ·	a outriego [parasets] - o so para seriel										
1	File	Edit	View Data	Transform Anal	yze Graph	ıs Utilities Ado	fons Window Help					
	▶ 🛛 🖞 🖶 🔶 🛗 推直 📲 🕸 🗮 😵 🍳 🌢											
			Name	Туре	Width	Decimals	Label	Values	Missing	Columns	Align	Measure
		1	kriminal	Numeric	8	0	tipe tindak kriminal	{1, dengan kek	None	8	Right	Scale
		2	usia	Numeric	8	0	kelompok usia	{1, dibawah	None	8	Right	Scale
		3	frekuensi	Numeric	8	0	frekuensi	None	None	8	Right	Scale

kemudian pada lembar data view kita masukkan data sebagai berikut :

untuk tipe **tindak kriminal** '1 = dengan kekerasan' dan **usia** '1 = dibawah 25' dengan frekuensi data **15.** untuk tipe **tindak kriminal** '1 = dengan kekerasan' dan **usia** '2 = 25-49' dengan frekuensi data **30.**

- dan seterusnya...

🛃 *Unti	tled3 [DataSet2]	- SPSS Data Edi	tor
File Edit	View Data Trans	form Analyze G	iraphs Utilities
🗁 日	🖴 🐨 🛧 🔿	🐜 🕼 🏘 🔸	f 💼 🖽 🤅
8 : usia			
	kriminal	usia	frekuensi
1	dengan kekerasa	dibawah 25	15
2	dengan kekerasa	25-49	30
3	dengan kekerasa	50 keatas	10
4	tanpa kekerasn	dibawah 25	5
5	tanpa kekerasn	25-49	30
6	tanpa kekerasn	50 keatas	10

c. klik data lalu pilih weight cases.

Modul Praktikum

- d. kemudian klik analyze, descriptive statistics, dan pilih crosstabs.
- e. pindahkan variabel tipe tindak kriminal [kriminal] ke box row(s) dan variabel kelompok usia[usia] ke dalam box column(s).

- f. klik cells, pada pilihan counts pilih observed dan expected, lalu klik continue.
- g. kemudian klik statistics, lalu continue

🖋 frekuensi [frekuensi]		
Crosstabs: Statistics		
Chi-square Nominal Contingency coefficient Phi and Cramér's V Lambda Uncertainty coefficient	Correlations Ordinal Gamma Somers' d Kendall's tau-b Kendall's tau-c	Continue Cancel Help
Nominal by Interval	Kappa Risk McNemar szel statistics	

h. kemudian klik **ok**, maka akan didapat hasil sebagai berikut :

Case Processing Summary

	Cases	lases					
	Valid		Missing		Total		
	Ν	Percent	Ν	Percent	Ν	Percent	
tipe tindak kriminal * kelompok usia	100	100.0%	0	.0%	100	100.0%	

tipe tindak kriminal * kelompok usia Crosstabulation

			kelompok usia			
			dibawah 25	25-49	50 keatas	Total
tipe tindak kriminal	dengan kekerasan	Count	15	30	10	55
		Expected Count	11.0	33.0	11.0	55.0
	tanpa kekerasn	Count Expected Count	5 9.0	30 27.0	10 9.0	45 45.0
Total		Count Expected Count	20 20.0	60 60.0	20 20.0	100 100.0

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	4.040(a)	2	.133
Likelihood Ratio	4.231	2	.121
Association	2.500	1	114
N of Valid Cases	100		

a 0 cells (.0%) have expected count less than 5. The minimum expected count is 9.00.

interpretasi hasil

untuk chi-square test for independence, SPSS memberikan hasil $\chi^2 = 4,040$ dengan derajat kebebasan = (r-1)(c-1)=(2-1)(3-1)=2 dan P-value=0,133. Karena P-value=0,133 lebih besar dari α =0.05, maka H₀: tipe tindak kriminal **tidak** tergantung pada kelompok usia pelaku **tidak** dapat ditolak. Kesimpulan tipe tindak kriminal **tidak** tergantung pada kelompok usia pelaku.

Praktek Statistik

MODUL VI ANALISA RAGAM SATU ARAH

A. MAKSUD DAN TUJUAN

1. MAKSUD

- Menganalisa data dengan analisa ragam satu arah
- 2. TUJUAN
 - Mahasiswa mampu menganalisa data dengan analisa ragam satu arah

B. TEORI SINGKAT

Analisa ragam satu arah (oneway ANOVA) digunakan untuk membandingkan mean lebih dari satu.. Bentuk hipotesisnya adalah sebagai berikut :

 $H_0: \mu_1 = \mu_2 = \mu_3 = \ldots = \mu_k$

H₁: minimal ada dua mean popuasi yang tidak sama.

C. PRAKTEK

Seorang manajer yang melakukan supervisi terhadap 3 production line tertarik akan kinerja ketiga production line tersebut. Selama 6 minggu, manajer itu mengumpulkan data jumlah produk yang cacat per 1000 unit yang produksi. Dua dari production line itu harus tutup selama 2 minggu karena harus perbaikan peralatan. Data yang di dapat manajer adalah sebagai berikut :

Production line 1	Production line 2	Production line 3
4.1	2.5	2.6
3.9	2.4	2.2
41	3.0	2.2
3.5	1.5	2.5
		1.2
		12

Apakah ketiga production line tersebut menghasilkan produk dengan kualitas yang sama ? gunakan $\alpha = 0,01$.

Penyelesaiannya

- 1. pada lembar variable view kita definisikan variabel production line dengan nama variabel line dan di beri label production line seta value '1 = production line 1'; '2 = production line 2';'3 =production line 3'. Untuk variabel jumlah produk yang cacat gunakan nama cacat dan diberi label jumlah produk cacat.
- 2. kemudian pada lembar data view kita masukkan data line dan cacat sebagai berikut

	÷	
🚰 *Unti	tled1 [DataS	ieto] - SPSS I
File Edit	View Data	Transform A
🗁 🔛	🖴 💷 🔷	• 🐡 🐜 📴
14 : cac	at	
	line	cacat
1	production I	4.1
2	production I	3.9
З	production I	4.1
4	production I	3.5
5	production I	2.5
6	production I	2.4
7	production I	3.0
8	production I	1.5
9	production I	2.6
10	production I	2.2
11	production I	2.2
12	production I	2.5
13	production I	1.2
14	production I	1.2
15		

- 3. kemudian klik analyze, compare means. Lalu pilih one-way ANOVA.
- 4. pindahkan variabel jumlah produk cacat [cacat] ke dependen list. Dan variabel production line ke factor.

5. untuk menghitung *post Hoc Multiple Comparison* dengan asumsi ketiga sample **production line** memiliki ragam (variance) yang sama, klik tombol berjudul **Post Hoc.** Pilih **Bonferroni** dan **Scheffe** lalu **continue.**

6. kemudian klik **option** pilih **homogeneity of variance test** untuk menguji asumsi apakah ketiga sampel **production line** berasal dari populasi yang mempunyai ragam (variance) sama. Lalu klik **continue.**

7. kemudian klik **ok**, maka akan di dapat hasil:

,	1
	Test of Homogeneity of Variances

Levene			
Statistic	df1	df2	Sig.
1.613	2	11	.243

ANOVA

		jumlah proc	luk cacat		
	Sum of	46	Maan Samana	F	C :-
	Squares	ar	Mean Square	F	51g.
Between Groups	9.274	2	4.637	15.098	.001
Within Groups	3.378	11	.307		
Total	12.652	13			

Post Hoc Tests

Γ			M	ultiple Compari	isons			
	Dependent	Variable: jumlah prdu	uk cacat					
				Mean Difference			95% Confide	ence Interval
		(I) production line	(J) production line	(I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
	Scheffe	production line 1	production line 2	1.5500*	.3919	.008	.444	2.656
			production line 3	1.9167*	.3577	.001	.907	2.926
		production line 2	production line 1	-1.5500*	.3919	.008	-2.656	444
			production line 3	.3667	.3577	.605	643	1.376
		production line 3	production line 1	-1.9167*	.3577	.001	-2.926	907
			production line 2	3667	.3577	.605	-1.376	.643
	Bonferroni	production line 1	production line 2	1.5500*	.3919	.007	.445	2.655
			production line 3	1.9167*	.3577	.001	.908	2.925
		production line 2	production line 1	-1.5500*	.3919	.007	-2.655	445
			production line 3	.3667	.3577	.982	642	1.375
		production line 3	production line 1	-1.9167*	.3577	.001	-2.925	908
			production line 2	3667	.3577	.982	-1.375	.642
	* The me	aan difference is sidr	ificant at the 05 level					

Homogeneous Subsets

	jumlah prod	uk cacat		
	production line	Ν	Subset for a	lpha = .05
		1	2	1
Scheffe(a ,b)	production line 3	6	1.983	
. ,	production line 2	4	2.350	
	production line 1	4		3.900
	Sig.		.624	1.000

Means for groups in homogeneous subsets are displayed.

- a Uses Harmonic Mean Sample Size = 4.500.
- b The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.

Interpretasi hasil

- Dari test of homogeneity of variance di dapat nilai P-value = 0,243 yang lebih besar dari α = 0,01. Sehingga H₀: $\sigma_1^2 = \sigma_2^2$ = σ_3^2 tidak dapat ditolak. Kesimpulan ketiga sampel production line berasal dari populasi yang memiliki ragam sama.
- Dari tabel ANOVA di dapat nilai sttistik F= 15,098 dengan derajar kebebasan K-1= 3 = 2 dan n-k = 14-3 = 11 dan P-value = 0,0001. Karena P-value lebih kecil dari α = 0,01, maka H₀ : $\mu_1 = \mu_2 = \mu_3$ ditolak. Kesimpulan ketiga production line menghasilkan produk dengan kualitas yang berbeda.
- Dari tabel homogeneous subsets terlihat bahwa subset 1 beranggotakan production line 3 dan production line 2. ini berarti production line 3 dan production line 2 tidak berbeda.

Tugas:

seseorang ingin mengetahui apakah ada perbedaan terhadap pertambahan berat badan 3 kelompok bayi berusia 2 bulan apabila di perlakukan dengan 3 cara pemberian ASI dan diperoleh datanya sebagai berikut :

BB1	BB2	BB3
350	300	342
375	300	310
380	275	290
370	290	370
410	310	340
400	330	330
500	350	350
475	290	400
385	310	450
420	305	325

Ket:

BB1 = berat badan bayi berumur 2 bulan yang hanya diberi ASI saja

BB2 = berat badan bayi berumur 2 bulan yang Tidak diberi ASI saja

BB3 = berat badan bayi berumur 2 bulan yang hanya diberi ASI dan susu bayi Gunakan $\alpha = 0.05$.

Praktek Statistik

MODUL VII ANALISA RAGAM DUA ARAH

A. MAKSUD DAN TUJUAN

1. MAKSUD

- Menganalisa data dengan analisa ragam dua arah
- 2. TUJUAN
 - Mahasiswa mampu menganalisa data dengan analisa ragam dua arah

B. TEORI SINGKAT

Analisa ragam dua arah (Twoway Analysis of Variance) digunakan untuk membandingkan mean lebih dari dua sampel yang diklasifikasikan menjadi dua factor atau dua klasifikasi. Ada tiga bentuk hipotesis analisa ragam dua arah : Untuk factor pertama (A) :

 $H_0: \mu'_1 = \mu'_2 = \mu'_3 = ... = \mu'_r$

 H_1 : minimal ada dua mean populasi yang tidak sama.

Untuk factor kedua (B) :

 ${\rm H}_{\rm 0}:\mu_1''=\mu_2''=\mu_3''=\ldots=\mu_c''$

 H_1 : minimal ada dua mean populasi yang tidak sama.

Untuk interkasi anatar kedua factor A dan factor B (bila ada);

 $H_0: (\mu_{AB})_1 = (\mu_{AB})_2 = (\mu_{AB})_3 = \dots = (\mu_{AB})_{r x c}$

H₁ : minimal ada dua mean interkasi populasi yang tidak sama.

Ket :

- μ'_1 = mean populasi baris ke-1 dari factor pertama.
- μ'_2 = mean populasi baris ke-2 dari factor pertama.
- μ'_3 = mean populasi baris ke-3 dari factor pertama.

 μ_{r}^{\prime} = mean populasi baris ke-r dari factor pertama.

 μ_1'' = mean populasi baris ke-1 dari factor kedua.

Dan seterusnya.

C. PRAKTEK

Data pada tabel di bawah ini adalah data hasil kuis yang didapat oleh 5 mahasiswa untuk 4 mata kuliah, yaitu : matematika, statistika, bahasa inggris, dan bahasa Indonesia. Gunakan $\alpha = 0,05$ untuk melakukan.

- a. Uji hipotesis bahwa kelima mahasiswa mempunyai kemampuan yang berbeda.
- b. Uji hipotesis bahwa keempat mata kuliah tersebut memiliki tingkat kesulitan yang berbeda.
- c. Uji hipotesis bahwa tidak ada interaksi antara mahasiswa dan mata kuliah.

Nama	Nilai kuis			
mahasiswa	Matematika	statistika	Bahasa inggris	Bahasa
				indonesia
andy	75	70	78	77
	74	72	79	79
	72	73	76	80
diah	79	85	82	80
	77	87	80	83
	78	88	81	81
hendra	70	74	81	76
A	71	76	84	75
	72	77	83	73
sinta	55	54	53	54
	54	53	50	50
	53	56	52	53
yanti	80	84	82	83
	82	83	81	82
	84	81	85	80

Penyelesaiannya.

1. pada variable view kita definisikan :

- a. variabel **mahasiswa** dengan nama **mahasiswa** dan labelnya mahasiswa serta value label '1 = andy'; '2 = diah'; '3 = hendra'; '4 = sinta'; '5 = yanti'. Skala variabel mahasiswa adalah **nominal.**
- b. variabel **matakuliah** dengan nama **mtkuliah** dan labelnya mata kuliah serta value label '1 = matematika';'2 = statistika';'3 = bahasa inggris';'4 = bahasa Indonesia'. Skala variabel matakuliah adalah **nominal.**
- c. variabel nilai kuis dengan nama nilai dan diberi variabel label nilai kuis.
- 2. pada lembar **data view** kita masukkan data di atas.

12:				
	mahasisw	mtkuliah	nilai	VS
1	Andy	Matematik	75	
2	Andy	Statistika	70	
3	Andy	Bahasa Ing	78	
4	Andy	Bahasa Ind	77	
5	Andy	Matematik	74	
6	Andy	Statistika	72	
7	Andy	Bahasa Ing	79	
8	Andy	Bahasa Ind	79	
9	Andy	Matematik	72	
10	Andy	Statistika	73	
11	Andy	Bahasa Ing	76	
12	Andy	Bahasa Ind	80	
13	Diah	Matematik	79	
14	Diah	Statistika	85	
15	Diah	Bahasa Ing	82	
16	Diah	Bahasa Ind	80	
17	Diah	Matematik	77	

3. kemudian klik analyze dan klik general linear model lalu pilih univariate.

Modul Praktikum

pindahkan variabel nilai kuis [nilai]. Kedependen variable dan variabel mahasiswa [mahasiswa] serta variabel 4. matakuliah[mtkuliah] ke Fixed factor(s).

5. untuk menghitung Post Hoc Multiple Comparison terhadap variabel mahasiswa dan variabel mata kuliah. Klik post Hoc. Pundahkan factor mahasiswa dan mtkuliah ke post hoc test for dan kemudian pilih Bonferroni biladiasumsikan sama dan Games-Howell bila di asumsikan variance tidak sama.

Disini kita memilih Bonferroni karena belum tahu asumsi mana yang bisa dipenuhi.

Univariate: Post Hoc Multiple Comparisons for Observed Means	
Factor(s): Post Hoc Tests for: Contin mehasisw mtkuliah Cance Help	ue el
Equal Variances Assumed LSD Ø Bonferroni Tukey Sidak Duncan Scheffe Duncan Ret-G-W F Hochberg's GT2 R-E-G-W Q Gabriel	_ ~
Equal Variances Not Assumed Tamhane's T2 Dunnett's T3 Games-Howell Dunnett's C	

kemudian klik continue. Lalu klik option. Pilih Homogeneity test 6.

intimated bit series of bits and	
stimated Marginal Means	Display Means for:
actor(s) and Factor Interactions.	Display Means for.
DVERALL)	
mtkuliah	
mahasisw"mtkuliah	
	Compare main effects
tisplay	
Descriptive statistics	Homogeneity tests
Estimates of effect size	Spread vs. level plot
Bearried power	Residual plot
Beremeter estimates	
Parameter estimates	Lack of fit
	General estimable function

7. kemudian klik continue lalu klik ok. Maka akan didapat hasil sebagai berikut : **Univariate Analysis of Variance** Potwoon Subjects Fast

De	etween-Su	ojecis raciois			
		Value Label		Ν	
Mahasiswa	1	Andy		12	
	2	Diah		12	
	3	Hendra		12	
	4	Sinta		12	
	5	Yanti		12	
Matakuliah	1	Matematika		15	
	2	Statistika		15	
	3	Bahasa Inggris		15	
	4	Bahasa Indone	sia	15	
Le	evene's Tes	st of Equality of	f Error	Varia	nces(a)
De	ependent V	ariable: Nilai K	uis		
F	df1	df2	Sig.		
.370	19	40	.989		

Tests the null hypothesis that the error variance of the dependent variable is equal across groups. a Design: Intercept+mahasisw+mtkuliah+mahasisw * mtkuliah

	Tests	of Between-Subje	cts Effects
T 7	 AT'1 ' TZ	•	

Dependent Variable	Dependent Variable: Nilai Kuis							
	Type III Sum							
Source	of Squares	df	Mean Square	F	Sig.			
Corrected Model	7300.600(a)	19	384.242	163.507	.000			
Intercept	325901.400	1	325901.400	138681.44 7	.000			
mahasisw	6854.267	4	1713.567	729.177	.000			
mtkuliah	92.600	3	30.867	13.135	.000			
mahasisw * mtkuliah	353.733	12	29.478	12.544	.000			
Error	94.000	40	2.350					

Praktek Statistik

Total	333296.000	60		
Corrected Total	7394.600	59		
D.G. 1 005		1 001		

a R Squared = .987 (Adjusted R Squared = .981)

post hoc test mahasiswa

Multiple Comparisons

Dependent Variable: Nilai Kuis Bonferroni

(I)	(J)	Mean Difference					
Mahasiswa	Mahasiswa	(I-J)	Std. Error	Sig.	95% Confidence	e Interval	-
			Upper	Lower		Lower	
		Lower Bound	Bound	Bound	Upper Bound	Bound	
Andy	Diah	-6.33(*)	.626	.000	-8.19	-4.47	
	Hendra	58	.626	1.000	-2.44	1.28	
	Sinta	22.33(*)	.626	.000	20.47	24.19	$\sim \sim$
	Yanti	-6.83(*)	.626	.000	-8.69	-4.97	
Diah	Andy	6.33(*)	.626	.000	4.47	8.19	
	Hendra	5.75(*)	.626	.000	3.89	7.61	
	Sinta	28.67(*)	.626	.000	26.81	30.53	
	Yanti	50	.626	1.000	-2.36	1.36	
Hendra	Andy	.58	.626	1.000	-1.28	2.44	
	Diah	-5.75(*)	.626	.000	-7.61	-3.89	
	Sinta	22.92(*)	.626	.000	21.06	24.78	
	Yanti	-6.25(*)	.626	.000	-8.11	-4.39	
Sinta	Andy	-22.33(*)	.626	.000	-24.19	-20.47	
	Diah	-28.67(*)	.626	.000	-30.53	-26.81	
	Hendra	-22.92(*)	.626	.000	-24.78	-21.06	
	Yanti	-29.17(*)	.626	.000	-31.03	-27.31	
Yanti	Andy	6.83(*)	.626	.000	4.97	8.69	
	Diah	.50	.626	1.000	-1.36	2.36	
	Hendra	6.25(*)	.626	.000	4.39	8.11	
	Sinta	29.17(*)	.626	.000	27.31	31.03	

Based on observed means.

* The mean difference is significant at the .05 level.

Matakuliah

Dependent Variable	· Nilai Kuie					
Bonferroni						
Bonicitoni						
		Mean Difference			95% Confide	ence Interva
(I) Matakuliah	(J) Matakuliah	(I-J)	Std. Error	Sig.	Lower Bound	Upper Bo
Matematika	Statistika	-2.47*	.560	.000	-4.02	
	Bahasa Inggris	-3.40*	.560	.000	-4.95	-1
	Bahasa Indonesia	-2.00*	.560	.006	-3.55	
Statistika	Matematika	2.47*	.560	.000	.91	4
	Bahasa Inggris	93	.560	.620	-2.49	
	Bahasa Indonesia	.47	.560	1.000	-1.09	:
Bahasa Inggris	Matematika	3.40*	.560	.000	1.85	4
	Statistika	.93	.560	.620	62	2
	Bahasa Indonesia	1.40	.560	.099	15	
Bahasa Indonesia	Matematika	2.00*	.560	.006	.45	
	Statistika	47	.560	1.000	-2.02	
	Bahasa Inggris	-1.40	560	099	-2.95	

*. The mean difference is significant at the .05 level.

Interpretasi hasil

- Dari tabel levene's test of equality of error variance yang menguji hipotesis
- H₀ : variance diasumsikan sama
- H₁: variance diasumsikan tidak sama

Didapat hasil P-value = 0,989 yang lebih besar dari α = 0,05 sehingga H₀ : variance diasumsikan sama **tidak** dapat ditolak. Kesimpulan variance sama.

- Dari tabel ANOVA di dapat nilai statistik untuk main effect sebagai berikut :
- a. Faktor **mahasiswa** : nilai uji F = 729,177 dengan derajat kebebasan r -1 = 5 1 = 4 dan rc(n-1) = 5x4(3-1) = 40 serta P-value=0,000. Karena P-value lebih kecil dari α =0,05, maka H₀ : $\mu_{andy} = \mu_{diah} = \mu_{hendra} = \mu_{sinta} = \mu_{yanti}$ **ditolak.** Kesimpulan kelima mahasiswa mepunyai kemampuan yang berbeda.
- b. Faktor **matakuliah** nilai uji F = 13,135 dengan derajar kebebasan c -1 = 4-1= 3 dan rc(n-1) = 5x4(3-1) = 40 serta P-value=0,000. Karena P-value lebih kecil dari α =0,05, maka H₀ : $\mu_{\text{matematika}} = \mu_{\text{statistika}} = \mu_{\text{bahasa indonesia}}$ **ditolak.** Kesimpulan keempat mata kuliah mepunyai tingkat kesulitan yang berbeda.
- c. Faktor **interaksi** : nilai uji F=12,544 dengan derajat kebebasan (r-1)(c-1) =

Praktek Statistik

(5-1)(4-1) = 12 dan rc(n-1)= 5x4(3-1) = 40 serta P-value=0,000. Karena P-value lebih kecil dari α = 0,05, maka H₀ : $(\mu_{mhs-mtkliah})_1 = (\mu_{mhs-mtkliah})_2 = \dots = (\mu_{mhs-mtkliah})_{20}$ ditolak. Kesimpulan ada interaksi diantara kedua faktor.

Tugas:

Suatu perusahaan roti menduga bahwa penataan roti pada etalase yang dipajang mempengaruhi penjualan roti. Penataan roti pada etalase meliputi tinggi (A : A₁, A₂, A₃) dan lebar (B₁,B₂, B₃). Apabila tingkat penjualan di ukur dari banyaknya roti yang terjual dan asumsikan $\alpha = 0,05$ diperoleh data sebagai berikut :

	Faktor B	Faktor B				
Faktor A	B_1 (regular)	B_2 (non regular)				
A_1 (dasar)	47	46				
	43	40				
A ₂ (tengah)	62	67				
	68	71				
A ₃ (tengah)	41	42				
	39	46				

MODUL VIII ALALISIS REGRESI SEDERHANA

A. MAKSUD DAN TUJUAN

1. MAKSUD

- Menganalisa data dengan analisa regresi sederhana
- 2. TUJUAN
 - Mahasiswa mampu menganalisa data dengan analisa regresi sederhana

B. TEORI SINGKAT

Analisis regresi sederhana digunakan untuk mempredeksi nilai suatu variabel dependen y berdasarkan nilai variabel independen x. analisis regresi juga dapat digunakan untuk melihat pengaruh variabel independen x terhadap variabel dependen y. variabel independen x sering disebut sebagai variabel prediktor, sedangkan variabel dependen y sering disebut sebagai variabel respons.

C. PRAKTEK

Sebuah perusahaan jeans memperkirakan bahwa iklan di televisi akan meningkatkan permintaan produk jeans perusahaan tersebut. Bagian marketing perusahaan tersebut membuat model persamaan regresi untuk mempredeksi permintaan produk berdasarakan biaya iklan yang pernah dianggarakan dan digunakan selama 19 tahun terakhir seperti tercantum dalam tabel berikut :

Jumlah permintaan jeans (dlm ribuan)	Biaya iklan (dlm puluhan juta)
94	0.473
96	0.753
95	0.929
95	0.939
94	0.832
95	0.983
94	1.049
104	1.178
104	1.176
106	1.292
108	1.403
110	1.499
113	1.529
113	1.599
118	1.749
115	1.746
121	1.897
127	2.040
131	2.231

Tentukan persamaan regresi untuk data diatas. Apakah regresi yang didapat signifikan. Gunakan $\alpha = 0.05$.

Penyelesaiannya

Bentuk hipotesis untuk menguji koefisien b₀ dan b₁

 $H_0: \beta_0 = 0, \ H_0: \beta_0 \neq 0 \operatorname{Dan} H_1: \beta_1 = 0, \ H_0: \beta_1 \neq 0$

Dimana $\beta_0 \, dan \, \beta_1$ adalah parameter dari model regresi $y_i = \beta_0 + \beta_1 \, \chi_i + \epsilon_i$ Prosedure dengan SPSS

- a. pada lembar variable view kita definisikan variabel jumlah permintaan jeans dengan nama variabel jeans dan labelnya jumlah permintaan jeans. Untuk variabel biaya iklan gunakan nama iklan dan labelnya biaya iklan.
 b. pada lembar data view masukkan data diatas.
- c. kemudian klik **analyze,regression.** Lalu pilih **linear**. Pindahkan variabel **jumlah permintaan jeans** ke dependent dan variabel **biaya iklan** ke independent(s).

d. pastikan anda memilih method : enter. Kemudian klik ok., maka akan di dapat hasil sebagai berikut :

e.

	Model	Summary		
			Adjusted R	Std. Error of
Model	R	R Square	Square	the Estimate
1	.969(a)	.938	.935	3.019

a Predictors: (Constant), Biaya Iklan

Praktek Statistik

١N	O	V۸	(h)	

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	2363.055	1	2363.055	259.266	.000(a)
	Residual	154.945	17	9.114		
	Total	2518.000	18			

a Predictors: (Constant), Biaya Iklan

b Dependent Variable: Jumlah Permintaan Jeans

Coefficients (a)									
Model		Unstandardized Coefficients		Standardized Coefficients	t	Sig.			
		В	Std. Error	Beta	В	Std. Error			
1	(Constant)	74.673	2.124		35.161	.000			
	Biaya Iklan	24.280	1.508	.969	16.102	.000			

a Dependent Variable: Jumlah Permintaan Jeans

interpretasi hasil

- dari *R*² (*R* square) dari tabel Model Summary menunjukkan bahwa 93,8% dari variance " **jumlah permintaan jeans**" dapat di jelaskan oleh perubahan dalam variabel " **biaya iklan** "
- tabel ANOVA diatas mengindifikasikan bahwa regresi secara statistik sangat signifikan dengan nilai F = 259.266 untuk derajat kebebasan k = 1 dan n-k-1 = 19 1 1 = 17 dan P-value = 0,000 yang jauh lebih kecil dari $\alpha = 0,05$.
- Uji *F* menguji secara serentak hipotesis H₀: β₁ = β₂ = β₃ = ... β_k = 0 terhadap H₁: tidak semua β_i, i = 1, 2, ..., k sama dengan nol. Tetapi karena pada regresi sederhana hanya ada satu β₁, maka kita hanya menguji H₀: β₀ = 0 terhadap H₁: β₁ ≠ 0. Dari tabel ANOVA jelas sekali terlihat bahwa H₀ ditolak karena *P*-value = 0,000 lebih kecil dari α = 0,05
- Persamaan garis regresi menggunakan metode kuadrat terkecil (least square method) yang didapat adalah : $\hat{y} = 74,673 + 24,280 \text{ x}$
 - Dimana \hat{y} = jumlah permintaan jeans dan x = biaya iklan.
- Untuk menguji signifikan masing-masing koefisien regresi digunakan uji statistik *t*. untuk menguji $\beta_1 : H_0 : \beta_1 = 0$ terhadap $H_1 : \beta_1 \neq 0$. Di dapat nilai t = 16,102 dengan derajat kebebasan n - 2 = 19 - 2 = 17 dan *P*-value = 0.000. hal ini merupakan bukti kuat penolakan $H_0 : \beta_1 = 0$, karena *P*-value = 0,000 lebih kecil dari $\alpha = 0,05$

Tugas:

sebuah penelitian tentang hubungan antara tinggi badan dengan berat badan pada siswa sebuah sekolah. Diambil secara acak 15 siswa pada sekolah tersebut dan diperoleh data sebagai berikut :

nama	Tinggi badan (x)	Berat badan (y)
Animah	120	38.4
Haryadi	126	41.6
Maya	135	46.2
Ina	135	49.8
Dewi	143	55.9
Yayuk	150	61.2
Masihah	150	59.8
Mafaza	155	66.5
Uniana	155	63.4
Maruija	155	65.8
Rendy	160	67.5
Fafa	162	68.7
Rangga	162	81.8
Jaka	170	75.8
wahana	172	78.6

Tentukan persamaan regresi untuk data diatas. Apakah regresi yang didapat signifikan. Gunakan $\alpha = 0.05$.

MODUL IX ANALISA REGRESI LINEAR BERGANDA

A. MAKSUD DAN TUJUAN

1. MAKSUD

- Menganalisa data dengan analisa regresi regresi linier berganda
- 2. TUJUAN
 - Mahasiswa mampu menganalisa data dengan analisa regresi linier berganda

B. TEORI SINGKAT

Analisa regresi linear berganda adalah pengembangan dari analisa regresi linear sederhana dimana terdapat lebih dari satu variabel independen x. analisa ini digunakan untuk melihat sejumlah variabel independen x_1 , x_2 , ... x_k terhadap variabel dependen y berdasarkan nilai variabel-variabel independen x_1 , x_2 , ... x_k .

C. PRAKTEK

Suatu perusahaan memiliki data usia, income sales person, dan pengalaman kerja sebagai sales. Perusahaan itu ingin membuat model regresi berganda untuk memprediksi income berdasarkan usia dan pengalaman kerja. Data dapat dilihat pada tabel dibawah ini ;

Usia (x_1)	Pengalaman kerja (x ₂)	Income (y)
31	4	35400
3	4	41200
38	5	45000
39	2	40300
30	0	22000
28	3	28000
20	0	13000
23	1	22000
25	2	26000
28	4	27000
29	5	30000

Tentukan koefisiensi dari persamaan regresi berganda dan tentukan apakah koefisiensi yang diperoleh signifikan. Lakukan pula estimasi untuk seorang sales yang berusia 40 tahun dengan pengalaman kerja 4 tahun. Gunakan $\alpha = 0.05$.

Penyelesaiannya

pada lembar variable view kita definisikan variabel usia dengan nama usia. Variabel pengalaman kerja dengan nama pengalaman, dan variabel income dengan nama income. Untuk variabel pengalaman kerja di beri label pengalaman kerja.
 pada lembar data view kita masukkan data diatas.

IZ, USIA	inour u		··· ·····		
	usia	pengalam	income	var	
1	31	4	35400		
2	37	4	41200		
3	38	5	45000		
4	39	2	40300		
5	30	0	22000		
6	28	3	28000		
7	20	0	13000		
8	23	1	22000		Κ.
9	25	2	26000		
10	28	4	27000		

30000

3. kemudian klik **analyze, regression**, lalu pilih **linear**. Pindahkan variabel i**ncome** ke dependent dan variabel **usia** serta **pengalaman kerja** ke independent(s)

4. pastikan method : enter telah terpilih, lalu klik statistics dan pilih estimates, model fit, collinearity diagnostics dan durbin-waston

Linear Regression: Stat	tistics	
Regression Coefficients Estimates Confidence intervals Covariance matrix	Model fit R squared change Descriptives Part and partial correlations Collinearity diagnostics	Continue Cancel Help
Residuals		
Durbin-Watson		
Casewise diagnostics		
 Outliers outside: All cases 	3 standard deviations	

5. kemudian klik **continue**, lalu klik **plots**. Pilih **normal probability plot**. Kemudian pindahkan standardized residual ***BZRESID** ke dalam kotak **Y** dan standardized predicted value ***ZPRED** ke dalam kotak **X**.

Linear Regressi	on: Plots	×
DEPENDNT *ZPRED *ZRESID *DRESID *ADJPRED *SRESID *SDRESID	Scatter 1 of 1 Previous Next Y: "ZRESID X: "ZPRED	Continue Cancel Help
Standardized Re	sidual Plots Produce all partial plots	

6. kemudian klik **continue**, lalu klik **ok** maka akan di dapat hasil sebagai berikut :

Variables Entered/Removed(b)

Model	Variables Entered	Variables Removed	Method
1	Pengalaman Kerja, usia(a)		Enter

a All requested variables entered.

b Dependent Variable: income

Model Summary(b)

			Adjusted R	Std. Error of		
Model	R	R Square	Square	the Estimate	Durbin-Watson	
1	.970(a)	.941	.927	2615.354	1.497	

a Predictors: (Constant), Pengalaman Kerja, usia

b Dependent Variable: income

ANOVA(b)

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	876968463 .994	2	438484231.99 7	64.105	.000(a)
	Residual	54720626. 915	8	6840078.364		
	Total	931689090 .909	10			

a Predictors: (Constant), Pengalaman Kerja, usia

b Dependent Variable: income

	Coefficientsª							
		Unstano Coeffi	lardized cients	Standardized Coefficients			Collinearity	/ Statistics
Model		B	Std. Error	Beta	t	Sig.	Tolerance	VIF
1	(Constant)	-10360.5	4218.164		-2.456	.040		
	usia	1201.098	157.935	.765	7.605	.000	.726	1.377
	Pengalaman Kerja	1663.516	524.950	.319	3.169	.013	.726	1.377

a. Dependent Variable: income

Collinearity Diagnostics^a

				Variance Proportions		
Model	Dimension	Eigenvalue	Condition Index	(Constant)	usia	Pengalaman Kerja
1	1	2.801	1.000	.00	.00	.02
1	2	.183	3.910	.05	.01	.79
	3	.016	13.443	.95	.98	.19

a. Dependent Variable: income

Residuals Statistics(a)

	Minimum	Maximum	Mean	Std. Deviation	Ν
Predicted Value	13661.45	43598.79	29990.91	9364.659	11
Residual	-3672.429	3071.740	.000	2339.244	11
Std. Predicted Value	-1.744	1.453	.000	1.000	11
Std. Residual	-1.404	1.175	.000	.894	11

a Dependent Variable: income

chart

Normal P-P Plot of Regression Standardized Residual

- Nilai *R² (R square)* dari tabel model summary menunjukkan bahwa 94.1% dari variance "**income** " dapat di jelaskan oleh perubahan dalam variabel " **usia**" dan " **pengalaman kerja** "
- Nilai uji statistik durbin-watson = 1,497. Jadi dapat diasumsikan tidak terjadi autocorrelation.
- Tabel ANOVA mengidentifikasikan bahwa regresi berganda secara statistic sangat signifikan dengan uji statistic F = 64,105 dan derajat kebebasan k = 2 dan *n*-*k*-1 = 11 2 1 = 8. *P*-value = 0.000 lebih kecil dari $\alpha = 0,05$.
- Uji *F* menguji hipotesis $H_0: \beta_1 = \beta_2 = 0$ terhadap $H_1: \beta_1 \text{ dan } \beta_2$ tidak sama dengan nol
- Dari *P*-value = 0,000 yang lebih kecil dari $\alpha = 0,05$., terlihat bahwa $H_0: \beta_1 = \beta_2 = 0$ ditolak secara signifikan. Ini berarti koefisien β_1 dan β_2 tidak smuanya bernilai nol.
- Untuk menguji apakah masing-masing koefisien regresi signifikan, digunakan uji-t dengan hasil sebagai berikut : a. Variabel **usia** $H_0: \beta_1$ terhadap $H_1: \beta_1 \neq 0$ Usril sii tert $H_0: \beta_1$ terhadap $H_1: \beta_1 \neq 0$
 - Hasil uji-*t* : *t* = 7,605 dengan derajat kebebasan n-k = 11-2-1= 8, dan *P*-value = 0.000 yang lebih kecil dari dari α = 0,05.. hal ini merupakan bukti kuat penolakan H_0 : β_1 = 0.
 - b. Variabel pengalaman kerja : H₀: β₂ = 0. Terhadap H₁: β₂ ≠ 0 Hasil uji-t t = 3,169 dengan derajat kebebasan n-k = 11-2-1= 8, dan P-value = 0.013 yang lebih kecil dari dari α = 0,05.. hal ini merupakan bukti kuat penolakan H₀: β₂ = 0. Sehingga dapat disimpulkan bahwa koefisien regresi tidak ada yang bernilai nol.
 - Persamaan regresi berganda yang diperoleh dengan menggunakan metode kuadrat terkecil kriteria adalah
 - $\hat{\mathbf{y}} = -10360, 5 + 1201, 098x_1 + 1663, 516x_2$
 - dimana : \hat{y} = income, x_1 = usia, x_2 = pengalaman kerja.
- Dari tabel coefficients juga terlihat baha nilai VIF = 1,377 sehingga masih dapat dianggap tidak terjadi multicollinearity (atau tepatnya hanya low collinearity).
- Dari normal probability plot juga terlihat bahwa titik-titik data berbentuk pola linear sehinggga konsisten dengan distribusi normal.

Scatterplot anatara ***ZRESID** dan ***ZPRED** tidak membentuk pola tertentu, sehingga bias dianggap residual mempunyai variance konstan. (homoscedasticity)

MODUL X ANALISA REGRESI LOGISTIK

A. MAKSUD DAN TUJUAN

- 1. MAKSUD
 - Menganalisa data dengan analisa regresi logistik
- 2. TUJUAN
 - Mahasiswa mampu menganalisa data dengan analisa regresi logistik

B. TEORI SINGKAT

Analisa regresi logistik digunakan untuk melihat pengaruh sejumlah variabel independen $x_1, x_2 \dots x_k$ terhadap variabel dependen y yang berupa variabel kategorik (binominal, multi nominal, atau ordinal) atau juga untuk memprediksi nilai suatu variabel dependen y (yang berupa variabel kategorik) berdasarkan nilai variabel-variabel independen $x_1, x_2 \dots x_k$

C. PRAKTEK

1. Regresi logistik biner

Adalah regresi logistik dimana variabel dependennya berupa variabel dikotomi atau variabel biner, misalnya suksesgagal, ya-tidak, benar-salah dll.

Contoh kasusnya adalah sebagai berikut :

Seorang peneliti mengamati pengaruh merokok dan berat badan terhadap detak jantung saat responden beristirahat. Detak jantung responden di kategorikan menjadi 1= tinggi dan 0=rendah, variabel merokok dikategorikan menjadi 1=merokok dan 0= tak merokok. Berikut data ini datanya:

Detak jantung	Merokok	Berat badan
1= tinggi, 0= rendah	1= merokok, 0= tak merokok	kg
1	1	68
0	1	71
0	0	57
0	0	86
0	0	70
0	1	77
0	0	70
0	0	98
0	0	59
1	1	59
0	0	70
0	0	74
0	0	57
1	1	61
0	0	57
1	0	54
0	0	55
0	0	52
0	0	46
0	0	75
0	0	68
0	0	50
1	0	53
0	1	79
1	0	43
		57
0	0	60
0		80
1	0	68
	0	90

Tentukan persamaan regresi logistik biner dan tentukan apakah koefisien regresi yang diperoleh signifikan. Gunakan $\alpha = 0.05$

Penyelesaiannya

n = 30, y = detak jantung, $x_1 = merokok$, $x_2 = berat badan$.

a. pada lembar variable view kita definisikan :

- untuk variabel detak jantung beri nama detak dan labelnya detak jantung, sedang value labelnya '1 = tinggi ';'2 = rendah '.
- untuk variabel merokok beri nama merokok dan labelnya merokok, sedang value labelnya '1 = merokok ';'2 = tak merokok '.
- untuk variabel berat badan beri nama berat dan labelnya berat badan,
- b. pada **data view** kita masukkan data diata.
- c. kemudian klik **analyze**, **regression**. Pilih **binary logistic**. Pindahkan variabel **detak jantung [detak]** ke dependent dan variabel **merokok [merokok]** dan **berat badan[berat]** ke covariates.

Praktek Statistik

d. pastikan method : enter telah terpilih. Kemudian klik ok, maka akan didapat hasil sebagai berikut : Logistic Regression **Case Processing Summary**

ouse i rooossing sammary							
Unweighted Cases(Ν	Percent					
Selected Cases Included in Analysis		30	100.0				
	Missing Cases	0	.0				
	Total	30	100.0				
Unselected Cases		0	.0				
Total		30	100.0				

a If weight is in effect, see classification table for the total number of cases.

Dependent Variable Encoding					
Original Value	Internal Value				
Rendah	0				
Tinggi	1				

Block 0: Beginning Block

	Classification Table(a,b)							
	Observed			Predicted				
	-			Detak Jantu	ng	Percentage Correct		
				Rendah	Tinggi	Rendah		
Step 0	Detak Jantung	Rendah		22	0	100.0		
		Tinggi		8	0	.0		
	Overall Percentage					73.3		
a Cor	a Constant is included in the model. b The cut value is .500							

Variables in the Equation							
		в	S.E.	Wald	df	Sig.	Exp(B)
Step 0	Constant	-1.012	.413	6.004	1	.014	.364

Variables not in the Equation

			Score	df	Sig.
Step	Variables	merokok	3.037	1	.081
0		berat	3.768	1	.052
	Overall Statistics		8.143	2	.017

Block 1: Method = Enter

Omnibus Tests of Model Coefficients

		Chi-square	df	Sig.			
Step 1	Step	11.617	2	.003			
1	Block	11.617	2	.003			
	Model	11.617	2	.003			
Model Summary							
	-2 I	Log Cox &	Snell Nage	lkerke R			

	-2 Log	Cox & Shell	Nagelkerke R		
Step	likelihood	R Square	Square		
1	23.178(a)	.321	.468		
a Estimation terminated at iteration much on Character					

a Estimation terminated at iteration number 6 because parameter estimates changed by less than .001.

Classification Table® Predicted _____ endah 21 3 Detak Jantung Percentage 95.5 62.5 Tinggi Observed Detak Jantung Rendah Tinggi Step 1 1 5 Overall Percentage 86.7

a. The cutvalue is .500

	Variables in the Equation						
		в	S.E.	Wald	df	Sig.	Exp(B)
Step	merokok	3.425	1.560	4.821	1	.028	30.71
1	berat	166	.073	5.080	1	.024	.84
1	Constant	8.016	4.018	3.980	1	.046	3027.81
a. \	9. Variable(s) entered on step 1: merokok, berat						

Interpretasi hasil

- tabel **dependen variable enconding** menunjukkan variabel detak jantung diberi kode 1= tinggi dan 0= rendah.
- Output block : 0 beginning block
 - Classification table menunjukkan tabel 2x2 dengan kolom berupa predicted values dari variabel dependen dan baris berupa niali data aktual yang diamati. Untuk model yang sempurna, semua cases akan terletak pada diagonal tabel dan overall percentage akan bernilai 100%. Jika model regresi logistic mempunyai variance sama, maka nilai persen (%) pad akedua baris hampir sama. Overall percentage yang memprediksi model dengan benar mempunyai nilai cukup baik sebesar $\frac{22}{30}$ x 100% - 73,3 %.
 - Tabel variables in the equation yang hanya berisi constant memberikan nilai $b_0 = -1,102$ atau exp(-1,012) = $e^{-1,012}$ 2. 0,364. Karena responden yang mempunyai detak jantung tinggi ada 8 dan yang mempunyai detak jantung rendah ada 22, maka odd ratio $=\frac{8}{22}=0,364$.
 - Uji wald pada tabel variables in the equation digunakan untuk menguji apakah masing-masing koefisien regresi logistik 3. signifikan. Uji wald sama dengan kuadrat dari rasio koefisien regresi logistic B dan standar error S.E. dalam contoh ini uji wald

= $\left[\frac{B}{S.E}\right]^2 = \left[\frac{-1,012}{0,413}\right]^2 = 6,004$. *P*-value = 0,014 lebih kecil dari $\alpha = 0,05$. Maka kesimpilannya **constant** dari model regresi logistic ini signifikan.

Pada output block 1 : method enter

- Tabel omnibus test of model coefficients memberikan nilai chi-square goodness-of-fit test sebesar 11,617 dengan 1. derajat kebebasan =2 P-value=0,003 lebih kecil dari $\alpha = 0,05$.. sehingga hasil uji ini sngat signifikan, chi-square goodness-of-fit test disini digunakan untuk menguji hipotesis : H_0 : memasukkan variabel independen ke dalam model tidak akan menambah kemampuan predeksi model regresi
 - logistik
- Tabel model summary memberikan nilai statistic -2 loglikehood = 23,178 . semakin kecil nilai -2 loglikehood 2. semakin baik.
- Koefisien cox & snall R square pada tabel model summary dapat diinterpretasikan sama seperti koefisien determinasi 3. R^2 pada regresi berganda. Tetapi karena nilai cox & snall R square biasanya lebih kecil dari 1 maka sukar untuk di interpretasikan dan jangan digunakan
- Koefisien nagelkerke R square pada tabel model summary merupakan modifikasi dari koefisiensi cox & snall R 4. square agar nilai maksimumnya bias mencapai satu dan mempunyai kisaran nilai antara 0 dan 1, sama seperti koefisien determinasi R^2 pada regresi linear nerganda. Nilai koefisien nagelkerke R square umumnya lebih besar dari koefisien $\cos \&$ snall R square tapi cenderung lebih kecil dibandingkan dengan nilai koefisien R^2 pada regrei linear berganda. Dalam contoh ini koefisien nagelkerke R square = 0,468.
- Hasil perhitungan koefisien dari model regresi logistik biner ini terlihat pada tabel variables in the equation sebagai 5. berikut :

In
$$\left(\frac{\pi}{1-\pi}\right) = 8,016 - 0,166$$
 berat + 3,425 merokok
Atau

 $\frac{\pi}{1-\pi} = \exp((8,016 - 0,166 \text{ berat} + 3,425 \text{ merokok}))$

- kolom **Exp(B)** merupakan odds ratio yang diprediksi oleh model : 6
 - a. untuk koefisien variabel merokok :
 - $\exp(3,425) = e^{3,425} = 30,712$
 - b. untuk koefisien variabel berat: $\exp(-0.166) = e^{-0.166} = 0.847$
 - Untuk **constant :** exp $(8,016) = e^{8,016} = 3027,815$
 - uji wald manguji masing-masing koefisien regresi logistik :

a. untuk koefisien variabel merokok:

 $=\left(\frac{B}{5.E}\right)^2 = \left(\frac{3.425}{1.560}\right)^2 = 4.821$. *P*-value = 0,028 lebih kecil dari $\alpha = 0.05$, maka koefisien regresi untuk variabel **merokok** signifikan.

b. untuk koefisien variabel berat:

 $\left(\frac{-0.166}{0.073}\right)^2 = 0.024$ P-value = 0.024 lebih kecil dari $\alpha = 0.05$, maka koefisien regresi untuk variabel **berat** signifikan. untuk constant :

 $\left(\frac{8,016}{4,018}\right)^2$ = 3,980. *P*-value = 0,046 lebih kecil dari α = 0,05, maka koefisien regresi untuk variabel **constant** signifikan.

2. Regresi logistik multinomial

Adalah regresi logistic dimana variabel dependennya berupa variabel kategorik yang terdiri lebih dari dua nilai, seperti : merah, biru, kuning, hitam atau islem, Kristen, hindu, budha dll

3. **Regresi logistik ordinal**

Adalah regresi logistic dimana variabel dependennya berupa variabel dengan skala ordinal seperti : sangat setuju, setuju, netral, tidak setuju, sangat tidak setuju, atau halus, sedang, kasar. dll

7.